

VA FILEMAN
SQL INTERFACE (SQLI)

VENDOR GUIDE
(DRAFT)

Patch DI*21.0*38

October 1997

Revised January 2005

Department of Veterans Affairs
VistA Health Systems Design & Development (HSD&D)

Infrastructure & Security Services (ISS)

Revision History

Documentation Revisions

The following table displays the revision history for this document. Revisions to the documentation are
based on patches and new versions released to the field.

Date Revision Description Author

01/18/98 1.0 Initial SQL Interface (SQLI), Patch
DI*21.0*38 software documentation
creation.

SQLI Project Team: Kyle Clarke
and Ellen Zufall, San Francisco
Office of Information Field Office
(OIFO)

05/11/98 1.1 Added explanation of P_START_AT and
P_END_IF for index tables.

Changed documentation of pointer
domains from Numeric to Integer.

Corrected table to note that all
Computed fields except Numeric are
projected as CHARACTER data type.

SQLI Project Team: Kyle Clarke
and Ellen Zufall, San Francisco
Office of Information Field Office
(OIFO)

01/19/05 2.0 Reformatted document to follow current
ISS standards. No other major content
changes made.

Reviewed document and edited for the
"Data Scrubbing" and the "PDF 508
Compliance" projects.

Data Scrubbing—Changed all
patient/user TEST data to conform to
HSD&D standards and conventions as
indicated below:

• The first three digits (prefix) of any
Social Security Numbers (SSN)
start with "000" or "666."

• Patient or user names are
formatted as follows:
KMPDPATIENT,[N] or
KMPDUSER,[N] respectively,
where the N is a number written
out and incremented with each
new entry (e.g., KMPDPATIENT,
ONE, KMPDPATIENT, TWO,
etc.).

• Other personal demographic-
related data (e.g., addresses,
phones, IP addresses, etc.) were
also changed to be generic.

Thom Blom, Oakland, CA OIFO

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) iii
Revised January 2005 DI*21.0*38

Revision History

PDF 508 Compliance—The final PDF
document was recreated and now
supports the minimum requirements to
be 508 compliant (i.e., accessibility tags,
language selection, alternate text for all
images/icons, fully functional Web links,
successfully passed Adobe Acrobat
Quick Check).

Table i: Documentation revision history

Patch Revisions

For a complete list of patches related to this software, please refer to the Patch Module on FORUM.

iv VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

Contents

Revision History .. iii
Figures and Tables ... ix
Orientation ...xiii

1. Introduction ...1-1

What is VA FileMan?..1-1
What is SQLI? ...1-1
What is the Purpose of this Manual?...1-1

2. Building an SQLI Mapper..2-1

Information Provided by SQLI..2-2
Organization of SQLI Information..2-2
SQLI Entity-Relationship Diagram...2-3
Guidelines for SQLI Mappers ...2-4

VA Programming Standards and Conventions ...2-4
Populating the SQLI_KEY_WORD File..2-4
Data Dictionary Synchronization..2-4
Kernel Compatibility ..2-5

3. Parsing the SQLI Projection ..3-1

About the Examples in this Chapter ..3-1
Using the {B}, {E}, {I}, {K}, and {V} Placeholders ...3-1
Example File..3-3
Starting Point: SQLI_SCHEMA File ..3-3
Find the Projected Table for a File ..3-4
Processing Tables ..3-4
About Table Elements ...3-5
Processing Columns ..3-6
Find a Table Element's Column Entry...3-6
IEN Columns...3-7
Find the Primary Key for a Given Table ...3-7

Primary Key for a Projected Subfile ...3-8
$ORDERING to Loop Through a File's Data Entries...3-9

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) v
Revised January 2005 DI*21.0*38

Contents

Assembling Record Locations...3-10
Retrieving Column Values ..3-11
Column Value Conversions...3-11

Domain Conversions (Base to Internal)..3-12
Output Format Conversions (Base to External) ..3-12

Foreign Keys ...3-12

4. VA FileMan and SQL ...4-1

Mapping VA FileMan Fields to SQL Data Types...4-3
VA FileMan Indexes ...4-6

5. File References ...5-8

SQLI_SCHEMA File ..5-10
SQLI_KEY_WORD File...5-11
SQLI_DATA_TYPE File..5-12
SQLI_DOMAIN File...5-13
SQLI_KEY_FORMAT File ..5-15
SQLI_OUTPUT_FORMAT File...5-17
SQLI_TABLE File ..5-19
SQLI_TABLE_ELEMENT File ...5-20
SQLI_COLUMN File..5-22
SQLI_PRIMARY_KEY File...5-25
SQLI_FOREIGN_KEY File ...5-27
SQLI_FOREIGN_KEY File ...5-27
SQLI_ERROR_TEXT File ...5-28
SQLI_ERROR_LOG File ...5-29

6. Application Program Interfaces (APIs)—Supported References ...6-1

7. Other Issues..7-1

Domain Cardinality ...7-1
SQLI and Schemas ..7-1
SQL Identifier Naming Algorithms...7-1
VA Business Rules and Insert/Update/Delete Operations...7-2
SQLI Implementation Notes..7-2

Glossary ...Glossary-1

vi VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Contents

Appendix A—Quick Reference Card ...A-1
Index ...Index-1

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) vii
Revised January 2005 DI*21.0*38

Contents

viii VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

Figures and Tables

Table i: Documentation revision history... iv
Table ii: Documentation symbol descriptions ..xiii
Table iii: A FileMan and SQL terminology equivalents... xiv
Figure 2-1: SQLI mapper utility diagram ...2-1
Figure 2-2: SQLI entity-relationship diagram ..2-3
Table 3-1: Placeholder symbols and usage ...3-1
Figure 3-1: Key Placeholders: {K1}, {K2}, etc. ..3-2
Figure 3-2: Return Value Placeholder: {V}..3-2
Figure 3-3: Sample condensed VA FileMan data dictionary (DD) listing of the DA RETURN CODES file

..3-3

Figure 3-4: Sample global map VA FileMan data dictionary (DD) listing of the DA RETURN CODES
file ..3-3

Figure 3-5: Sample code to determine the corresponding SQLI_TABLE file for a particular VA FileMan
file ..3-4

Figure 3-6: Sample DA RETURN CODES file entry in the SQLI_TABLE file (#1.5215).........3-4
Figure 3-7: Sample code finding the table elements for a given table..3-4
Figure 3-8: Sample showing how many and what types of table elements exist for a given table3-5
Figure 3-9: Sample column-type table element entries for the DA_RETURN_CODES table.....3-6
Figure 3-10: Sample code to find corresponding columns by using table elements.....................3-6
Figure 3-11: Sample entry in the SQLI_COLUMN file ...3-6
Figure 3-12: Sample code searching for a primary key (type of "P") for a given table................3-7
Figure 3-13: Sample code to obtain the primary key for the DA_RETURN_CODES table........3-7
Figure 3-14: Sample showing the number of parts of a primary key for the DA RETURN CODES file

..3-8

Figure 3-15: Sample of a single-part key..3-8
Figure 3-16: Sample code for obtaining the primary key for the SQLI_TABLE_ELEMENT file3-8
Figure 3-17: Sample entries in the SQLI_PRIMARY_KEY file (1 of 2).....................................3-8
Figure 3-18: Sample entries in the SQLI_PRIMARY_KEY file (2 of 2).....................................3-9
Figure 3-19: Sample code for a simple loop of entries in a subfile for the primary key3-9
Figure 3-20: Sample full global reference location of a record with placeholders for each IEN3-10
Figure 3-21: Sample routine that loops through each column in a table's primary key to assemble the

global reference for file entries for that table ...3-10
Table 3-2: Standard situations where SQLI provides foreign keys ..3-13

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) ix
Revised January 2005 DI*21.0*38

Figures and Tables

Figure 3-22: Sample code finding all foreign keys for a given table..3-13
Table 4-1: Terminology between VA FileMan, SQL, and the Relational Model.........................4-1
Table 4-2: VA FileMan DD elements and their locations ..4-1
Table 4-3: VA FileMan field types ...4-2
Figure 4-1: VistA Pointer field types..4-4
Figure 4-2: VistA Set of Code field types...4-4
Table 4-4: SQLI translation from VA FileMan field types to SQL columns4-6
Figure 4-3: Sample naming convention of tables derived from cross-reference4-6
Figure 4-4: Table projected for "B" index of the PATIENT file (#2)...4-7
Figure 4-5: Table elements projected for PATIENT_XB_NAME ...4-7
Figure 4-6: Columns projected for PATIENT_XB_NAME...4-7
Figure 4-7: Primary key projected for PATIENT_XB_NAME..4-8
Figure 4-8: Partial index listing ..4-8
Figure 5-1: SQLI_SCHEMA file—Index...5-10
Table 5-1: SQLI_SCHEMA file—Fields ...5-10
Figure 5-2: SQLI_KEY_WORD file—Index ...5-11
Table 5-2: SQLI_KEY_WORD file—Field ...5-11
Figure 5-3: SQLI_DATA_TYPE file—Indexes ...5-12
Table 5-3: SQLI_DATA_TYPE file—Fields ...5-12
Figure 5-4: SQLI_DOMAIN file—Indexes..5-13
Table 5-4: SQLI_DOMAIN file—Fields..5-14
Figure 5-5: SQLI_KEY_FORMAT file—Indexes ...5-15
Table 5-5: SQLI_KEY_FORMAT file—Fields ...5-15
Figure 5-6: SQLI_OUTPUT_FORMAT file—Index ...5-17
Table 5-6: SQLI_OUTPUT_FORMAT file—Fields..5-17
Figure 5-7: SQLI_TABLE file—Indexes ...5-19
Table 5-7: SQLI_TABLE file—Fields ...5-19
Figure 5-8: SQLI_TABLE_ELEMENT file—Indexes...5-20
Table 5-8: SQLI_TABLE_ELEMENT file—Fields...5-20
Figure 5-9: DDL command to define a table ..5-20
Figure 5-10: SQLI_COLUMN file—Indexes...5-22
Table 5-9: SQLI_COLUMN file—Fields...5-24
Figure 5-11: SQLI_PRIMARY_KEY file—Indexes..5-25
Table 5-10: SQLI_PRIMARY_KEY file—Fields..5-26

x VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Figures and Tables

Figure 5-12: SQLI_FOREIGN_KEY file—Index ..5-27
Table 5-11: SQLI_FOREIGN_KEY file—Fields...5-27
Figure 5-13: SQLI_ERROR_TEXT file—Index..5-28
Table 5-12: SQLI_ERROR_TEXT file—Field ..5-28
Figure 5-14: SQLI_ERROR_LOG file—Indexes...5-29
Table 5-13: SQLI_ERROR_LOG file—Fields...5-29
Table 6-1: SQLI APIs ...6-1
Table A-1: SQLI Quick Reference Card..A-6

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) xi
Revised January 2005 DI*21.0*38

Figures and Tables

xii VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

Orientation

How to Use this Manual

The purpose of this manual is to provide information about the SQL Interface (SQLI) software (i.e., VA
FileMan Patch DI*21.0*38).

This manual provides guidance about how VA FileMan files and fields may be projected through SQL
and ODBC. It does not attempt to explain relational database concepts, SQL queries, or how to access
ODBC data sources. For this information, you should consult the documentation provided with the
relational database products you are using. You may want to purchase training in these areas as well.

Throughout this manual, advice and instructions are offered regarding the use of the SQL Interface
(SQLI) software and the functionality it provides for Veterans Health Information Systems and
Technology Architecture (VistA) software products.

This manual uses several methods to highlight different aspects of the material:

• Various symbols are used throughout the documentation to alert the reader to special information.
The following table gives a description of each of these symbols:

Symbol Description

Used to inform the reader of general information including references to
additional reading material.

Used to caution the reader to take special notice of critical information.

Table ii: Documentation symbol descriptions

• Descriptive text is presented in a proportional font (as represented by this font).

• Conventions for displaying TEST data in this document are as follows:

 The first three digits (prefix) of any Social Security Numbers (SSN) will be in the "000"
or "666."

 Patient and user names will be formatted as follows: [Application Name]PATIENT,[N]
and [Application Name]USER,[N] respectively, where "Application Name" is defined in
the Approved Application Abbreviations document and "N" represents the first name as a
number spelled out and incremented with each new entry. For example, in Kernel (KRN)
test patient and user names would be documented as follows: KRNPATIENT,ONE;
KRNPATIENT,TWO; KRNPATIENT,THREE; etc.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) xiii
Revised January 2005 DI*21.0*38

Orientation

• HL7 messages, "snapshots" of computer online displays (i.e., roll-and-scroll screen
captures/dialogues) and computer source code, if any, are shown in a non-proportional font and
enclosed within a box.

 User's responses to online prompts will be boldface type. The following example is a
screen capture of computer dialogue, and indicates that the user should enter two question
marks:

Select Primary Menu option: ??

 The "<Enter>" found within these snapshots indicate that the user should press the Enter

key on their keyboard. Other special keys are represented within < > angle brackets. For
example, pressing the PF1 key can be represented as pressing <PF1>.

 Author's comments, if any, are displayed in italics or as "callout" boxes.

Callout boxes refer to labels or descriptions usually enclosed within a box,
which point to specific areas of a displayed image.

• All uppercase is reserved for the representation of M code, variable names, or the formal name of

options, field and file names, and security keys (e.g., the XUPROGMODE key).

VA FileMan and SQL Terminology

The following table lists the equivalent terminology between VA FileMan and SQL:

VA FileMan SQL

n/a Schema

File or Multiple Table

Field Column

Field Type Domain

Record Row

Table iii: A FileMan and SQL terminology equivalents

How to Obtain Technical Information Online

Exported file, routine, and global documentation can be generated through the use of Kernel, MailMan,
and VA FileMan utilities.

Methods of obtaining specific technical information online will be indicated where applicable
under the appropriate topic.

xiv VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Orientation

Help at Prompts

VistA software provides online help and commonly used system default prompts. Users are encouraged to
enter question marks at any response prompt. At the end of the help display, you are immediately returned
to the point from which you started. This is an easy way to learn about any aspect of VistA software.

To retrieve online documentation in the form of Help in any VistA character-based product:

• Enter a single question mark ("?") at a field/prompt to obtain a brief description. If a field is a
pointer, entering one question mark ("?") displays the HELP PROMPT field contents and a list of
choices, if the list is short. If the list is long, the user will be asked if the entire list should be
displayed. A YES response will invoke the display. The display can be given a starting point by
prefacing the starting point with an up-arrow ("^") as a response. For example, ^M would start an
alphabetic listing at the letter M instead of the letter A while ^127 would start any listing at the
127th entry.

• Enter two question marks ("??") at a field/prompt for a more detailed description. Also, if a field
is a pointer, entering two question marks displays the HELP PROMPT field contents and the list
of choices.

• Enter three question marks ("???") at a field/prompt to invoke any additional Help text stored in
Help Frames.

Obtaining Data Dictionary Listings

Technical information about files and the fields in files is stored in data dictionaries. You can use the List
File Attributes option on the Data Dictionary Utilities submenu in VA FileMan to print formatted data
dictionaries.

For details about obtaining data dictionaries and about the formats available, please refer to the
"List File Attributes" chapter in the "File Management" section of the VA FileMan Advanced
User Manual.

Assumptions About the Reader

This manual is written with the assumption that the reader is familiar with the following:

• VistA computing environment (e.g., Kernel Installation and Distribution System [KIDS])

• VA FileMan data structures and terminology

• Microsoft Windows

• M programming language

• Relational Database Concepts

• SQL Queries

• How to access ODBC Data Sources

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) xv
Revised January 2005 DI*21.0*38

Orientation

It provides an overall explanation of configuring and using the SQL Interface (SQLI) software contained
in VA FileMan Patch DI*21.0*38. However, no attempt is made to explain how the overall VistA
programming system is integrated and maintained. Such methods and procedures are documented
elsewhere. We suggest you look at the various VA home pages on the World Wide Web (WWW) for a
general orientation to VistA. For example, go to the Veterans Health Administration (VHA) Office of
Information (OI) Health Systems Design & Development (HSD&D) Home Page at the following Web
address:

http://vista.med.va.gov/

Reference Materials

Readers who wish to learn more about the SQL Interface (SQLI) software should consult the following:

• VA FileMan SQLI Site Manual

• VA FileMan SQLI Vendor Manual (this manual; targeted for M-to-SQL vendors)

• SQLI Home Page (for more information on SQLI) at the following temporary Web address:

http://vista.med.va.gov/sqli/index.asp

This site contains additional information and documentation.

VistA documentation is made available online in Microsoft Word format and in Adobe Acrobat Portable
Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader
(i.e., ACROREAD.EXE), which is freely distributed by Adobe Systems Incorporated at the following
Web address:

http://www.adobe.com/

For more information on the use of the Adobe Acrobat Reader, please refer to the Adobe
Acrobat Quick Guide at the following Web address:

http://vista.med.va.gov/iss/acrobat/index.asp

VistA documentation can be downloaded from the Health Systems Design and Development (HSD&D)
VistA Documentation Library (VDL) Web site:

http://www.va.gov/vdl/

VistA documentation and software can also be downloaded from the Enterprise VistA Support (EVS)
anonymous directories:

• Albany OIFO ftp.fo-albany.med.va.gov

• Hines OIFO ftp.fo-hines.med.va.gov

• Salt Lake City OIFO ftp.fo-slc.med.va.gov

• Preferred Method download.vista.med.va.gov

This method transmits the files from the first available FTP server.

xvi VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

http://vista.med.va.gov/
http://vista.med.va.gov/sqli/index.asp
http://www.adobe.com/
http://vista.med.va.gov/iss/acrobat/index.asp
http://www.va.gov/vdl/
ftp://ftp.fo-albany.med.va.gov/
ftp://ftp.fo-hines.med.va.gov/
ftp://ftp.fo-slc.med.va.gov/

 Orientation

DISCLAIMER: The appearance of external hyperlink references in this manual does not
constitute endorsement by the Department of Veterans Affairs (VA) of this Web site or
the information, products, or services contained therein. The VA does not exercise any
editorial control over the information you may find at these locations. Such links are
provided and are consistent with the stated purpose of this VA Intranet Service.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) xvii
Revised January 2005 DI*21.0*38

Orientation

xviii VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

1. Introduction

What is VA FileMan?

VA FileMan is a database management system (DBMS) which is used at DVA medical facilities. It is
implemented in the M programming language.

With the release of VA FileMan Version 21 in December of 1994, VA FileMan introduced a silent
Database Server (DBS) programming API, which set the stage for extending database access to non-host
users on local and wide area networks. SQLI, for example, makes extensive use of VA FileMan's DBS
API.

What is SQLI?

VA FileMan's SQLI (SQL Interface) product projects a relational view of VA FileMan data dictionaries
for use by M-to-SQL vendors. This provides a supported mechanism for M-to-SQL vendors to access
VA FileMan's internal data dictionaries. M-to-SQL vendors can use SQLI to map their SQL data
dictionaries directly to VA FileMan data. By doing this they view and access VA FileMan data as native
SQL tables.

What is the Purpose of this Manual?

This manual is designed to help you, the M-to-SQL vendor, create and maintain an SQLI mapper utility.
An SQLI mapper utility reads the projection of VA FileMan's data dictionaries provided by SQLI. It maps
your M-to-SQL product's data dictionaries based on SQLI's projection so that your M-to-SQL product can
directly access VA FileMan data as relational tables.

This manual may also be useful if you are providing technical support for an SQLI system; it can help
provide an understanding of how SQLI works.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 1-1
Revised January 2005 DI*21.0*38

Introduction

1-2 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

2. Building an SQLI Mapper
:s:

To map your M-to-SQL product's data dictionaries to directly access VA FileMan data, based on the
information projected by SQLI, you will need to create an SQLI mapper utility. This SQLI mapper utility
should read the published information on each VA FileMan file from the SQLI's projection. It should use
this information to generate DDL commands (or use some similar method) that map your SQL data
dictionaries directly to VA FileMan data.

Figure 2-1: SQLI mapper utility diagram

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 2-1
Revised January 2005 DI*21.0*38

Building an SQLI Mapper

Information Provided by SQLI

SQLI's projection of VA FileMan data dictionaries provides:

• A complete projection of VA FileMan files and fields as relational tables.

• Pre-defined SQL-compatible names for tables, columns, and keys.

• Global locations to retrieve data elements directly.

• Code to retrieve data elements through API calls.

• Code to convert retrieved data elements from internal FileMan format to base and external
column formats.

• A standard set of strategies for VA FileMan field types whose projection in relational terms is
non-trivial (pointer fields, variable pointer fields, word-processing fields, and subfiles).

This information is published in a way that is tailored to use by an M-to-SQL vendor. It relieves you from
having to access VA FileMan's internal data dictionary structures to determine certain parameters that are
not explicit in VA FileMan. Also, using SQLI should insulate your code from proposed changes in the
VA FileMan data dictionary.

Organization of SQLI Information

SQLI is implemented as a set of VA FileMan files within a single M global, with no multiples or word-
processing fields.

The organization of the files mirrors SQL2 standard Data Definition Language (DDL) syntax. Every data
structure in the main SQLI files reflects some portion of the DDL commands needed to create SQL data
dictionaries for VA FileMan data (essentially, the CREATE TABLE command).

Additional syntax has been added to support the definition of M global structures, virtual columns, key
and output formats and other objects outside the scope of the SQL standard.

2-2 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Building an SQLI Mapper

SQLI Entity-Relationship Diagram

This diagram organizes the file entities in their importance to the operation of the SQLI package. It shows
conceptual relationships between the files, but not a comprehensive view of the physical pointer
relationships between files.

Figure 2-2: SQLI entity-relationship diagram

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 2-3
Revised January 2005 DI*21.0*38

Building an SQLI Mapper

Guidelines for SQLI Mappers

VA Programming Standards and Conventions

Be aware that your code will be running in VA production accounts along with VA code. Adherence to
the VA Programming SAC (Standards and Conventions) is highly recommended. This includes
guidelines about the setting and killing of variables, the ways that devices are used, and not interfering
with the error trapping provided by VA's Kernel package.

Obtaining a formal namespace from the VA's DBA (Database Administrator) is also advised.

Populating the SQLI_KEY_WORD File

The SQLI_KEY_WORD file (#1.52101) stores any words that SQLI should not use for SQL entity
names. At any given site, it may not be populated with any keywords at all. So you (the M-to-SQL
vendor) should use SQLI's KW^DMSQD entry point to populate this SQLI_KEY_WORD file
(#1.52101):

• Any keywords specific to your (vendor) M-to-SQL product.

• The standard set of reserved keywords for SQL as defined by the ANSI standard for SQL.

• The keywords for ODBC as defined by Microsoft.

Also, in your instructions to sites using your SQLI mapper, make sure that adding your keywords to the
SQLI_KEY_WORD file (#1.52101) is done prior to the site generating their first SQLI projection.

Data Dictionary Synchronization

To aid sites with data dictionary synchronization, your SQLI mapper utility should provide entry points
for the following functions:

• Remapping your SQL data dictionary for all tables projected by SQLI.

• Remapping your SQL data dictionary for one table projected by SQLI.

2-4 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Building an SQLI Mapper

Kernel Compatibility

Besides conforming to the VA Programming SAC, be aware that sites will probably want to run your
utilities as background tasks using TaskMan, a module of VA's Kernel package. Sites are likely to want to
create a single "task" that calls your keyword utility, runs the VA SQLI projection, and then runs your
SQLI mapper.

To be compatible with running as a background task in TaskMan, your keyword utility and SQLI mapper
should:

• Not issue any READs or in any way make either entry point interactive. This allows the entry
point to run in the background. If you need to ask questions, separate that section of code from
the actual SQLI mapper code.

• Not issue USE commands. The "current device" is already opened and available when an entry
point is run as a task in the Kernel environment. If you need to use USE commands (e.g., to write
to a host file), make sure you store the value of the current device so you can return to it.

• For output, issue WRITE commands. Do not use escape sequences, however; any output should
be able to print on a simple line printer.

For more information on background tasks in the Kernel environment, please refer to the
"TaskMan" section of the Kernel Systems Manual.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 2-5
Revised January 2005 DI*21.0*38

Building an SQLI Mapper

2-6 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

3. Parsing the SQLI Projection

This chapter gives examples of how to traverse SQLI's indexes and retrieve the information needed to
map your SQL data dictionaries.

Retrieving the information stored in the SQLI files involves traversing their indexes and retrieving the
field values stored in their indexes and in the entries themselves.

Full descriptions of the SQLI file and index structures are contained in the "File References"
chapter in this manual. You may also want to refer to Appendix A—Quick Reference Card in
this manual.

The global location of each SQLI file and its associated fields and indexes are stable, supported
references. You can reference these locations directly.

About the Examples in this Chapter

The specific approaches provided in this chapter are suggestions only, and do not cover all of the ways
you can retrieve information from SQLI.

Using the {B}, {E}, {I}, {K}, and {V} Placeholders

SQLI provides M executable code and expressions in certain fields. This M code provided by SQLI can
use the following placeholder symbols:

Symbol Usage

{B} Base value of a column—used for computation

{E} External value of a column—used for display

{I} Internal value of a VA FileMan field—used for storage

{K[1..n]} Key value—{K} is the current key, {K1} is the first key, etc.

{V[1..n]} Value—used for function arguments and output value

Table 3-1: Placeholder symbols and usage

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 3-1
Revised January 2005 DI*21.0*38

Parsing the SQLI Projection

Field Value Placeholders: {I}, {B} and {E}

• The {I} placeholder is used to represent Internal values, that is, the VA FileMan internal value of
a field.

• The {B} placeholder is used to represent Base values, that is, the base value of a column.

• The {E} placeholders is used to represent External values, that is, the externally formatted view
of the field that a user should see.

Key Placeholders: {K1}, {K2}, etc.

These placeholders represent portions of the primary key for a table column, numbered corresponding to
the P_SEQUENCE values of a primary key. They are used primarily in the C_FM_EXEC field of the
SQLI_COLUMN file (#1.5217). Substitute the appropriate primary key values to assemble a global
reference to retrieve a particular column value. For example:

^DMSQ("C",672,3) = S {V}=$$GET^DMSQU(9.4901,"{K3},{K2},{K1},",.03)

Figure 3-1: Key Placeholders: {K1}, {K2}, etc.

In this case, {K3} represents the value of the part of the primary key whose P_SEQUENCE is 3; {K2}
represents the part of the primary key whose P_SEQUENCE is 2; and {K1} represents the part of the
primary key whose P_SEQUENCE is 1. This call retrieves the value of a column from its corresponding
VA FileMan field.

Return Value Placeholder: {V}

This placeholder is used to denote where to place a variable that should receive a return value. One
example of where the {V} "value" placeholder is used is in the SQLI_COLUMN file (#1.5217), in M
code provided by the C_FM_EXEC field. For example:

^DMSQ("C",485,3) = S {V}=$$GET^DMSQU(1.1,"{K1},",.04)

Figure 3-2: Return Value Placeholder: {V}

In this case, substitute the variable name you want the output of the $$GET function returned in, for the
{V} placeholder, before executing the M code.

3-2 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Parsing the SQLI Projection

Example File

Throughout this chapter, a simple VA FileMan file, DA RETURN CODES file, is projected by SQLI.
Here is a condensed VA FileMan data dictionary listing of this file:

CONDENSED DATA DICTIONARY---DA RETURN CODES FILE (#3.22)
UCI: VAH,FLD VERSION: 8.0
STORED IN: ^%ZIS(3.22,
--------- ---
FIELD FIELD
NUMBER NAME

.01 DA Return String (RF), [0;1]
2 Terminal Type String (RFX), [0;2]
3 DESCRIPTION (Multiple-3.223), [1;0]
 .01 DESCRIPTION (WL), [0;1]

Figure 3-3: Sample condensed VA FileMan data dictionary (DD) listing of the DA RETURN CODES file

The following is a global map VA FileMan data dictionary (DD) listing of this file:

GLOBAL MAP DATA DICTIONARY #3.22 -- DA RETURN CODES FILE
STORED IN ^%ZIS(3.22, (15 ENTRIES) SITE: KERNEL UCI: KRN,KDE

This file holds the translation between the ANSI DA return code and the name in the
terminal type file that should be used.

CROSS REFERENCED BY: DA Return String(B), DA Return String(B1)

^%ZIS(3.22,D0,0)= (#.01) DA Return String [1F] ^ (#2) Terminal Type String
 ==>[2F] ^
^%ZIS(3.22,D0,1,0)=^3.223^^ (#3) DESCRIPTION
^%ZIS(3.22,D0,1,D1,0)= (#.01) DESCRIPTION [1W] ^

Figure 3-4: Sample global map VA FileMan data dictionary (DD) listing of the DA RETURN CODES file

Starting Point: SQLI_SCHEMA File

This version of SQLI maps all VA FileMan files to a single schema, SQLI. So for the time being, you can
assume that all tables are projected within the same schema (SQLI). Therefore, your starting point when
processing the information in SQLI should be the SQLI_TABLE file (#1.5215; not the SQLI_SCHEMA
file [#1.521]).

In the future, however, SQLI may project tables in more than one schema. At that point in time, an index
may be added on the T_SCHEMA field of the SQLI_TABLE file (#1.5215), such that you can loop
through schemas, and within schemas process tables.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 3-3
Revised January 2005 DI*21.0*38

Parsing the SQLI Projection

Find the Projected Table for a File

Within a given schema, you CAN loop through each table and process the information for that table.

To find the SQLI_TABLE file (#1.5215) entry for a particular VA FileMan file, you can look up the file's
number in the "C" cross-reference of the SQLI_TABLE file (#1.5215). For example, to determine the
corresponding SQLI_TABLE file (#1.5215) entry for the DA RETURN CODES file (#3.22), do the
following:

> W $O(^DMSQ("T","C",3.22,""))
97

Figure 3-5: Sample code to determine the corresponding SQLI_TABLE file for a particular VA FileMan file

Therefore the internal entry number (IEN) of the SQLI_TABLE file (#1.5215) entry for DA RETURN
CODES is 97. That entry in the SQLI_TABLE file (#1.5215) looks like the following:

NUMBER: 97 T_NAME: DA_RETURN_CODES
 T_SCHEMA: SQLI
 T_COMMENT: This file holds the translation between the ANSI DA return c
 T_VERSION_FM: 1 T_FILE: DA_RETURN_CODES
 T_UPDATE: JUL 31, 1997 T_GLOBAL: ^%ZIS(3.22,{K})

Figure 3-6: Sample DA RETURN CODES file entry in the SQLI_TABLE file (#1.5215)

Processing Tables

When processing a table, once you have the table's IEN in the SQLI_TABLE file (#1.5215), the next
thing to do is loop through the set of table elements for that table.

One way to find the table elements for a given SQLI_TABLE file (#1.5215) entry is to look up that
entry's IEN in the "D" index of the SQLI_TABLE_ELEMENT file (#1.5216), and find each matching
table element:

S EL="" F S EL=$O(^DMSQ("E","D",tableien,EL)) Q:EL']""

Figure 3-7: Sample code finding the table elements for a given table

However, using the "F" index of the SQLI_TABLE_ELEMENT file (#1.5216), you can see both how
many and also what type of table elements were projected for a table.

3-4 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Parsing the SQLI Projection

For example, in the case of the DA_RETURN_CODES table (IEN #97):

Global ^DMSQ("E","F",97
 DMSQ("E","F",97
^DMSQ("E","F",97,"C",256) =
^DMSQ("E","F",97,"C",2273) =
^DMSQ("E","F",97,"C",2274) =
^DMSQ("E","F",97,"C",2275) =
^DMSQ("E","F",97,"P",255) =
Global ^

Figure 3-8: Sample showing how many and what types of table elements exist for a given table

This shows that five table elements (four columns and one primary key) are projected for the
DA_RETURN_CODES table.

About Table Elements

Every entry in the SQLI_TABLE_ELEMENT file (#1.5216) is associated with at least one entry in the
SQLI_COLUMN (#1.5217), SQLI_PRIMARY_KEY (#1.5218), or SQLI_FOREIGN_KEY file
(#1.5219). The associated entries contain the details of each table element, and associate themselves with
table elements by pointing to the SQLI_TABLE_ELEMENT file (#1.5216).

For columns, only a single column in the SQLI_COLUMN file (#1.5217) will point to any given column-
type table element.

For primary keys however, one or more entries in the SQLI_PRIMARY_KEY file (#1.5218) will point to
the single primary key table element for any given table. This is because some primary keys have many
parts. Pointing to a single primary key table element is how these many parts in the
SQLI_PRIMARY_KEY file (#1.5218) are organized into a single comprehensive primary key.

Likewise for foreign keys, one or more entries in the SQLI_FOREIGN_KEY file (#1.5219) will point to
the single foreign key table element for any given foreign key.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 3-5
Revised January 2005 DI*21.0*38

Parsing the SQLI Projection

Processing Columns

The following example (Figure 3-9) looks at the column-type table element entries for the
DA_RETURN_CODES table. These provide the relational specifications for each table element:

NUMBER: 256 E_NAME: DA_RETURN_CODES_ID
 E_DOMAIN: INTEGER E_TABLE: DA_RETURN_CODES
 E_TYPE: Column
 E_COMMENT: Primary key #1 of table DA_RETURN_CODES

NUMBER: 2273 E_NAME: DA_RETURN_STRING
 E_DOMAIN: CHARACTER E_TABLE: DA_RETURN_CODES
 E_TYPE: Column
 E_COMMENT: This field holds the string returned from sending a ANSI DA to

NUMBER: 2274 E_NAME: TERMINAL_TYPE_STRING
 E_DOMAIN: CHARACTER E_TABLE: DA_RETURN_CODES
 E_TYPE: Column
 E_COMMENT: This is the string that should be used in a lookup to the terminal
type

NUMBER: 2275 E_NAME: DESCRIPTION
 E_DOMAIN: WORD_PROCESSING E_TABLE: DA_RETURN_CODES
 E_TYPE: Column
 E_COMMENT: The description of the description field is that of holding the
description

Figure 3-9: Sample column-type table element entries for the DA_RETURN_CODES table

Find a Table Element's Column Entry

For table elements that correspond to columns, use the "B" index of the SQLI_COLUMN file (#1.5217)
to find the corresponding column entry in SQLI.

For example, for the column-type table element entry #2273, the corresponding column is as follows:

> W $O(^DMSQ("C","B",2273,""))
1734

Figure 3-10: Sample code to find corresponding columns by using table elements

This entry, in the SQLI_COLUMN file (#1.5217), looks like the following:

NUMBER: 1734 C_TABLE_ELEMENT: DA_RETURN_STRING
 C_WIDTH: 70 C_FILE: 3.22
 C_FIELD: .01 C_NOT_NULL: Required
 C_SECURE: Not secure C_VIRTUAL: Base column
 C_PARENT: DA_RETURN_CODES_ID C_PIECE: 1
 C_GLOBAL: ,0)

Figure 3-11: Sample entry in the SQLI_COLUMN file

3-6 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Parsing the SQLI Projection

IEN Columns
:
SQLI projects one internal entry number (IEN) column for every top-level VA FileMan table. This
column is intended to be used by you to store the IEN of each record. This IEN is important for a number
reasons, one of which is that SQLI projects the primary key of each table based on the IEN column. So
you need provide IEN columns for each table. In the case of the DA_RETURN_CODES table, the IEN
column is the DA_RETURN_CODES_ID column.

For subfiles, one IEN column is projected in SQLI for each of the subfile's parents. This allows the
projected table to store the IEN for each "parent" file entry as these entries exist in VA FileMan. This
allows end-users to reassemble the relationships in SQL for a subfile table that exist in VA FileMan.

Find the Primary Key for a Given Table

Use the "F" index in the SQLI_TABLE_ELEMENT file (#1.5216), and search for the single entry with a
type of "P":

S PKEY=$O(^DMSQ("E","F",tableien,"P",""))

Figure 3-12: Sample code searching for a primary key (type of "P") for a given table

This returns a single entry in that represents the primary key of the table in question. In the case of the
DA_RETURN_CODES table, the primary key is as follows:

> W $O(^DMSQ("E","F",97,"P",""))
255

Figure 3-13: Sample code to obtain the primary key for the DA_RETURN_CODES table

There is only one entry in the SQLI_TABLE_ELEMENT file (#1.5216) for a table's primary key. The
way a primary key is projected in SQLI is that one or more corresponding entries in the
SQLI_PRIMARY_KEY file (#1.5218) contain the actual parts of the primary key. They all point back to
the single entry in the SQLI_TABLE_ELEMENT file (#1.5216) to compose a single, combined primary
key. Each SQLI_PRIMARY_KEY file (#1.5218) entry's P_SEQUENCE field identifies the order in
which that part of the primary key should be assembled.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 3-7
Revised January 2005 DI*21.0*38

Parsing the SQLI Projection

The following example (Figure 3-14) looks at the primary key projected for the DA_RETURN_CODES
table. Use the SQLI_PRIMARY_KEY file (#1.5218)'s "B" index to discover how many parts are in the
DA RETURN CODES file's (#3.22) primary key, based on its primary key table element:

Global ^DMSQ("P","B",255
 DMSQ("P","B",255
^DMSQ("P","B",255,159) =
Global ^

Figure 3-14: Sample showing the number of parts of a primary key for the DA RETURN CODES file

In this case, the primary key is a single-part key. That entry looks like the following:

NUMBER: 159 P_TBL_ELEMENT: DA_RETURN_CODES_PK
 P_COLUMN: DA_RETURN_CODES_ID P_SEQUENCE: 1
 P_START_AT: 0 P_END_IF: '{K}

Figure 3-15: Sample of a single-part key

Each part of the primary key, as stored in the SQLI_PRIMARY_KEY file (#1.5218), points to the column
upon which that part of the primary key is based. In this case, this part of the primary key (which is the
only part) is based on the IEN column for the table.

Primary Key for a Projected Subfile

The DA RETURN CODES file (#3.22) contains a word-processing field, which is stored like a subfile by
VA FileMan. Therefore its primary key has more than one part.

If the IEN in the SQLI_TABLE file (#1.5215) for the DA_RET_CODES_DESCRIPTION file is 98, then
the entry in the SQLI_TABLE_ELEMENT file (#1.5216) for its primary key can be obtained as follows:

> W $O(^DMSQ("E","F",98,"P",""))
257

Figure 3-16: Sample code for obtaining the primary key for the SQLI_TABLE_ELEMENT file

The matching entries in the SQLI_PRIMARY_KEY file (#1.5218) are as follows:

Global ^DMSQ("P","B",257
 DMSQ("P","B",257
^DMSQ("P","B",257,160) =
^DMSQ("P","B",257,161) =

Figure 3-17: Sample entries in the SQLI_PRIMARY_KEY file (1 of 2)

3-8 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Parsing the SQLI Projection

These entries look like the following:

NUMBER: 160
P_TBL_ELEMENT: DA_RET_CODES_DESCRIPTION_PK
 P_COLUMN: DA_RETURN_CODES_ID P_SEQUENCE: 1
 P_START_AT: 0 P_END_IF: '{K}

NUMBER: 161
P_TBL_ELEMENT: DA_RET_CODES_DESCRIPTION_PK
 P_COLUMN: DA_RET_CODES_DESCRIPTION_ID P_SEQUENCE: 2
 P_START_AT: 0 P_END_IF: '{K}

Figure 3-18: Sample entries in the SQLI_PRIMARY_KEY file (2 of 2)

These are the two parts to the DA_RET_CODES_DESCRIPTION table's primary key.

P_COLUMN for sequence 1 of the primary key points to the IEN column in the subfile table that stores
the IEN of what, in VA FileMan, would be the subfile's parent entry. P_COLUMN for sequence 2 of the
primary key points to the IEN column in the subfile table that stores the IEN of what, in VA FileMan,
would be the IEN of the subfile entry.

Therefore, the primary key for the subfile's table combines the IEN of entries in each VA FileMan file
level above the subfile's table, plus the IEN column of the subfile's table itself.

$ORDERING to Loop Through a File's Data Entries

The P_START_AT and P_ENDIF fields in the SQLI_PRIMARY_KEY file (#1.5218) provide the initial
value for a $ORDER loop through a file's actual data entries and the expression to complete the loop.

The following example (Figure 3-19) assumes that the table only contains a single element in the primary
key (i.e., the table is for a top-level VA FileMan file). The loop would need to be more complex to loop
through entries for a subfile.

;IEN = internal entry number of record to retrieve
;PSTARTAT = P_START_AT value for table's single-part primary key.
;PENDIF = P_END_IF value for table's single-part primary key.
;DMG = global storage for entries in this table. It is assumed
; to be a top-level table, with a single-part primary key.
;
S IEN=PSTARTAT,EXIT=$P(PENDIF,"{K}")_"IEN"_$P(PENDIF,"{K}",2)
F S IEN=$O(@($P(DMG,"{K}")_IEN_")")) D I @EXIT Q
.I @EXIT Q
.;code to retrieve entry would go here
.W !,IEN

Figure 3-19: Sample code for a simple loop of entries in a subfile for the primary key

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 3-9
Revised January 2005 DI*21.0*38

Parsing the SQLI Projection

Assembling Record Locations

You can assemble the global location of any record given the following pieces of information:

• Each primary key entry in the SQLI_PRIMARY_KEY file (#1.5218) for the table.

• For each primary key entry, the C_GLOBAL value of the corresponding column.

• The column values for each column upon which the primary key is based.

Combine in order of P_SEQUENCE the C_GLOBAL value for each column that is part of a table's
primary key. You end up with a string that that is a full global reference, with placeholders for each IEN.
For example:

^DPT({K},.373,{K})

Figure 3-20: Sample full global reference location of a record with placeholders for each IEN

The following sample routine loops through each column in a table's primary key in order of
P_SEQUENCE, retrieves the C_GLOBAL value for each column, and assembles the global reference for
file entries for that table:

; DMT: table number in question
; DMK: placeholder string
; DMEP: primary key element
; DM: primary key column sequence (P_SEQUENCE)
; DMC: column for a part of the primary key
; DMCG: C_GLOBAL value for column
; DMG: accumulated global root
;
S DMK="{K}",DMG=""
S DMEP=$O(^DMSQ("E","F",DMT,"P",""))
S DM=0 F S DM=$O(^DMSQ("P","C",DMEP,DM)) Q:DM="" D
. S DMS=DM,DMC=$O(^DMSQ("P","C",DMEP,DM,""))
. S DMCG=^DMSQ("C",DMC,1),DMG=DMG_DMCG_DMK
S DMG=DMG_")" W DMG

Figure 3-21: Sample routine that loops through each column in a table's primary key to assemble the global
reference for file entries for that table

The string you generate will look exactly like the value in the SQLI_TABLE file (#1.5215)'s T_GLOBAL
field.

To determine the storage location of a particular entry in that table, replace the Placeholders:{K}s with
the value of each part of the primary key for the entry. In the above example, the first {K} would be
replaced by the part of the subfile's primary key whose P_SEQUENCE is 1, and the second {K} with the
part of subfile's primary key whose P_SEQUENCE is 2.

3-10 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Parsing the SQLI Projection

Retrieving Column Values

Each VA FileMan field type except computed has a fixed global storage location within each
corresponding VA FileMan entry. Appending the value in a column's C_GLOBAL field to the storage
location of the record in question yields the node that the corresponding field is stored in.

• For fields using normal storage, SQLI provides the ^-delimited piece of the data node in the
C_PIECE field.

• For fields using extract storage, SQLI provides the extract from and extract to positions for the
data node in the C_EXTRACT_FROM and C_EXTRACT_THRU fields.

Data you retrieve from VA FileMan data globals is in internal VA FileMan format. Sometimes you can
use this data without conversions of any kind. However:

• Domain conversions are provided when the internal VA FileMan format differs from the base
column format (see the "Column Value Conversions" topic that follows).

• Output formats are provided for columns whose external format differs from the base column
format (see the "Column Value Conversions" topic that follows).

Retrieving Column Values through a DBS Call

The SQLI_COLUMN file (#1.5217) provides code in the C_FM_EXEC field to retrieve the external field
value a DBS call, for columns derived from the following VA FileMan field types:

• Computed

• Pointer

• Variable Pointer

This code is useful for resolving the external value for pointer field types. A pointer field in one file can
point to a pointer field in another file and so forth, resulting a long pointer chain until you finally reach a
non-pointer field to access the external value of the original pointer field.

Also, a DBS call is also the only way to retrieve the value for computed fields, which have no permanent
storage. A value of 1 in the C_VIRTUAL field indicates which columns are based on computed fields.
For such columns, use the M code in the C_FM_EXEC field to retrieve the computed field value.

Column Value Conversions
:
SQLI provides column conversions for some columns. Base-to-internal conversions are provided in the
SQLI_DOMAIN file (#1.5212). Base-to-external conversions are provided in the
SQLI_OUTPUT_FORMAT file (#1.5214).

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 3-11
Revised January 2005 DI*21.0*38

Parsing the SQLI Projection

Domain Conversions (Base to Internal)
:
Some domains created by SQLI provide conversions between VA FileMan internal {I} format to SQL
base {B} data format. No conversion is provided when the SQL base and VA FileMan internal form for a
column are the same.

Specifically, for columns whose domains are date-time valued (FM_DATE and FM_MOMENT), the
domains in the SQLI_DOMAIN file (#1.5212) provide conversions in the DM_BASE_EXEC and
DM_INT_EXEC fields. Also, the FM_BOOLEAN domain provides conversions in the DM_INT_EXPR
and DM_BASE_EXPR fields.

You should always check the SQLI_DOMAIN file (#1.5212) when processing columns to determine if a
domain conversion is provided.

Output Format Conversions (Base to External)

Given the base column value derived from a VA FileMan field, entries in the SQLI_OUTPUT_FORMAT
file (#1.5214) provide M code to generate the external value to present to the end-user for the column in
question.

Columns do not need an output format if the base column data format is the same as its external data
format. Output formats are therefore provided only for columns derived from Pointer and Set of Codes
VA FileMan field types.

Output formats that affect a column can be designated for individual columns, for all columns in a given
SQLI_DOMAIN file (#1.5212) domain, and for all columns whose domain is a given
SQLI_DATA_TYPE file (#1.5211) data type.

The order of precedence for which output format to use, if there is more than one, is as follows:

1. C_OUTPUT_FORMAT in the column's SQLI_COLUMN file (#1.5217) entry

2. DM_OUTPUT_FORMAT in the associated domain's SQLI_DOMAIN file (#1.5212) entry

3. D_OUTPUT_FORMAT in the associated data type's SQLI_DATA_TYPE file (#1.5211) entry

You should always check the SQLI_OUTPUT_FORMAT file (#1.5214) when processing columns to
determine if an output format conversion is provided.

Foreign Keys

Your M-to-SQL product may or may not support foreign keys. If it does, you can use the foreign keys
projected by SQLI to make it easier for the end-user to recreate certain relationships that are explicit in
the original VA FileMan data.

3-12 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Parsing the SQLI Projection

SQLI projects foreign keys in the following standard situations:

Situation Foreign Key(s) Provided

Column based on pointer
field

In the table containing the pointer field column, one for the pointed-to
file, named pointer_field_name_FK. The join is from the pointer field to
the pointed-to table.

Table projected for subfile
or word-processing field

In the subfile or word-processing field's table, one for each parent table,
each named parent_table_PFK. Each join links the subfile to its original
VA FileMan parent.

Table 3-2: Standard situations where SQLI provides foreign keys

One advantage of foreign key syntax over joins is that rows are not lost when the value of a join column
is null. For example, foreign key syntax (e.g., NEW_PERSON_FK@NAME) can be used in the select
clause to obtain the value of the column NAME from the NEW_PERSON table, rather than doing a join
to NEW_PERSON in a where clause. A row is returned even if the NAME column of the corresponding
row in the NEW_PERSON file (#200) is null.

To find all of the foreign keys for a given table, use the "F" index of the SQLI_TABLE_ELEMENT file
(#1.5216), and search for all entries with a type of "F":

S COL="" F S COL=$O(^DMSQ("E","F",tableien,"F",COL)) Q:COL']""

Figure 3-22: Sample code finding all foreign keys for a given table

Pointer Fields

In the case of foreign keys set up to mimic the relationship provided by pointer fields, the name of the
foreign key is the pointer field's name followed by "_FK". For example:

 Pointer field column: TEMPORARY_STATE

 Pointer field from table: NEW_PERSON

 Pointer field to table: STATE

 Foreign key name: TEMPORARY_STATE_FK

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 3-13
Revised January 2005 DI*21.0*38

Parsing the SQLI Projection

Subfiles and Parent Foreign Keys

Tables derived from subfiles, including those for word-processing fields, have foreign keys projected by
SQLI to each table that is a higher file level (up to the top-level file that is the highest parent of the
subfile). These foreign keys within a subfile's table are named with the pointed-to table name followed by
"_PFK" (parent foreign key). For example:

 Subfile table: NEW_PERSON_ALERT_DATE_TIME

 Parent table: NEW_PERSON

 Foreign key name: NEW_PERSON_PFK

Every foreign key to a given table has the same domain as the primary key of that table. While not
supported by SQL, this convention makes entity relationships more explicit and should help vendors
maintain referential integrity constraints during mapping.

3-14 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

4. VA FileMan and SQL

VA FileMan, SQL, and the Relational Model

The following table lists the equivalent terminology between VA FileMan (projected as a relational
database), SQL, and the Relational Model:

VA FileMan SQL Relational Model

File or Multiple Table Relation

Field Column Attribute

Label Name Name

Field Type Domain Domain

Record Row Tuple

Table 4-1: Terminology between VA FileMan, SQL, and the Relational Model

VA FileMan File Definition Structures

The entities that together form a VA FileMan file definition (data dictionary) are contained at the
following locations:

Data Dictionary Element Location

Dictionary of Files ^DIC(Filenumber,

Attribute Dictionary ^DD(Filenumber,

Field Definition Nodes ^DD(Filenumber, fieldnumber,

File Header Zero subscript of the file's global root

Table 4-2: VA FileMan DD elements and their locations

You should not need to access any of this information directly. All relevant information about file
definitions needed for projecting VA FileMan data is published by SQLI.

For more information on file definition structures, please refer to the "Global File Structure"
chapter in the VA FileMan Programmer Manual.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 4-1
Revised January 2005 DI*21.0*38

File References

VA FileMan Field Types
:
The following table lists each of the nine possible VA FileMan field types.

More information on the specifics of each field type can be found in the VA FileMan Advanced
User Manual.

Field Type Description

Computed Value is computed on-the-fly (no permanent storage)

Date Time can be mandatory, optional, or not allowed

Free Text Free Text, up to 250 characters in length

MUMPS Contains MUMPS code

Numeric Can be integer or decimal-valued

Pointer Points to .01 field of an entry in another file (value is IEN of pointed-to entry)

Set of codes Restricts a user to just a few possible values. Codes have an internal and
external format.

Variable Pointer Like a pointer field, except that the pointer may be to an entry in one of several
files.

Word-processing This is a memo-type field, with no size limit, implemented in a subfile-like
structure. It stores multiple lines of text, and has no size limit.

Table 4-3: VA FileMan field types

VA FileMan Subfiles (Multiples)

VA FileMan entries can contain "multiple-valued" fields, known as multiples or subfiles. A subfile is
essentially a file-within-a-file. For example, a PATIENT file (#2) entry might have an "Appointments"
multiple-valued field. This file-within-a-file can contain one or more entries for the patient's
appointments. Multiples can themselves contain multiple-valued fields.

Viewed from within VA FileMan, multiples are hierarchical. Data storage for an entry's multiple field is
contained descendant from the same subscript as data for the entry itself. However, it is possible to
conceptually "flatten" multiples and project them as if they are standalone tables, especially since they are
defined in a similar fashion to standalone files in VA FileMan's attribute dictionary. SQLI handles
multiples in this fashion.

4-2 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

Mapping VA FileMan Fields to SQL Data Types

VA FileMan field types do not correspond exactly to the SQL concept of data types, but are projected in
ways that ultimately result in categorization by data type.

You can determine the original VA FileMan field type of a column through the associated domain's
DM_FILEMAN_FIELD_TYPE field. This is a set of codes field, the value of which represents the
original VA FileMan field type of the column (and domain) in question.

IEN Columns
s:
SQLI provides a column for the original IEN of each VA FileMan record. The name for the IEN column
is based on the table name followed by "_ID". For example, the PATIENT file (#2) has a single column
primary key, PATIENT_ID.

Computed Fields

Projection of Computed fields is complicated mildly by the fact that SQL DDL syntax supports only base
data, while Data Manipulation Language supports expressions. Columns for VA FileMan computed fields
are flagged with the C_VIRTUAL field in the SQLI_COLUMN file (#1.5217). You can retrieve their
computed value with the code in each column's C_FM_EXEC field, which uses DBS calls.

A number of different computed field return value types are possible: Multiline, Boolean-valued, Free
text, Date, and Numeric.

Multiline computed fields are not supported by the DBS or by SQLI; a character error message
is returned by the SQLI-provided M code as the value for a multiline computed field.

Date Fields

Code is provided in the two VA FileMan-specific date domains, FM_DATE and FM_MOMENT, to
convert between internal VA FileMan formatted dates and date/times, and column "base format"
$HOROLOG dates and date/times. The code is in the DM_INT_EXEC and DM_BASE_EXEC fields.

Free Text, Numeric, and MUMPS Fields

No conversion is needed for the Free Text, Numeric, or MUMPS field types; internal, base, and external
formats are identical.

Pointer Fields

The Pointer field type conforms to SQL's Foreign Key constraint, and is projected as such in SQLI. VA
FileMan, however, allows direct reference to a pointer field, returning the text value of the primary

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 4-3
Revised January 2005 DI*21.0*38

File References

identifier of the row reached by recursively following the pointer chain until the identifier is not itself a
pointer. This usage is projected in SQLI by giving pointers an integer domain and an output format that
uses the DBS to return the resolved value. For example:

OF_NAME: FOREIGN_FORMAT_PTOF OF_DATA_TYPE: INTEGER
 OF_COMMENT: Output format for pointer to FOREIGN_FORMAT
 OF_EXT_EXPR: $S('{B}:"",1:$$GET^DMSQU(.44,{B}_",",.01))

Figure 4-1: VistA Pointer field types

Substitute the base value of the column for {B}, and the expression returns the resolved external text
value of the pointer field.

Set of Codes Fields

An output format is provided for each distinct Set of Codes "set" to display the long form of the base
column value (which should be the code only). These output format entries are pointed to from
SQLI_COLUMN file (#1.5217) entries. For example:

OF_NAME: M_MERGE_O_OVERWRITE OF_DATA_TYPE: CHARACTER
 OF_COMMENT: Set output format
 OF_EXT_EXPR: $P($P(";m:MERGE;o:OVERWRITE;",";"_{B}_":",2),";")

Figure 4-2: VistA Set of Code field types

Substitute the base value of the field (which the same as its VA FileMan internal form for Set of Codes
field types) for {B}, and the expression returns the external value of the code.

Variable Pointer Fields

The Variable Pointer data type is not relationally atomic, the only true violation of the relational model in
VA FileMan. In SQLI, a column for a variable pointer field has a character domain, and an output format
that returns the VA FileMan display value from whichever of the VA FileMan files each entry actually
points to.

4-4 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

Summary: How SQLI Translates VA FileMan Field Types into SQL Columns

FM Field
Type

FM Internal Format SQL Domain, Data Type, Base
Format

SQL External Format

Date valued: CHARACTER domain, data type.

Multiline-valued: Base format: same as FM internal
format.

Same as base format.

Free Text:

Boolean-valued:

Computed

Numeric-valued: See Numeric FM Field Type.

Date yyymmdd.hhmmss

yyy: #yrs. since 1700

mm: month (00-12)

dd: day (00-31)

hh: hour (00-23)

mm: minute (01-59)

ss: seconds (01-59)

Date only: FM_DATE domain;
DATE data type.

Date w/Time optional:
FM_MOMENT domain, MOMENT
data type.

Date w/Time required:
FM_DATE_TIME domain,
MOMENT data type.

Base format is date/time in
$HOROLOG format.

User-friendly version of
date. For example:

JUL 31, 1997

Free Text Free text. CHARACTER domain, data type.

Base format: same as FM internal
format.

Same as base format.

MUMPS Free text. FM_MUMPS domain,
CHARACTER data type.

Base format: same as FM internal
format.

Same as base format.

Numeric Numeric. NUMERIC or INTEGER domain
and data type.

Base format: same as FM internal
format.

Same as base format.

Pointer Integer IEN of the
pointed-to entry.

POINTER domain.

INTEGER data type.

External .01 field value of
pointed-to entry (pointer
chain must be followed)
(provided by an output
format).

Set of
Codes

Internally stored
"code", typically
shorter than the
external form.

SET_OF_CODES domain;
CHARACTER data type.

Base format: same as FM internal
format.

External value that the
code stands for
(provided by an output
format).

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 4-5
Revised January 2005 DI*21.0*38

File References

FM Field
Type

FM Internal Format SQL Domain, Data Type, Base
Format

SQL External Format

Variable
Pointer

IEN;global file root

For example:

4;DIC(42,

VARIABLE_POINTER domain;
CHARACTER data type.

Base format: External .01 field
value of pointed-to entry at end of
pointer chain.

External .01 field value of
pointed-to entry (pointer
chain must be followed)
(provided by an output
format).

Word-
processing

Memo-type field, no
size limit, stored in a
subfile.

WORD_PROCESSING domain
and data type.

Base format: A set of rows in a
table, one row per textline.

Optionally make
available as a memo
field; otherwise, same as
base format.

Table 4-4: SQLI translation from VA FileMan field types to SQL columns

Word-processing Fields

VA FileMan Word-processing fields are stored similarly to multiples, and are projected by SQLI in two
ways:

• As a standalone table (each line of text is one entry in the table).

• As columns for vendors who support a HUGE_CHARACTER or MEMO data type.

If you have an appropriate MEMO-like data type, you could place word-processing text into a column of
this data type, and decide whether or not to make the word-processing tables available to your users.

The main problem with memo data types is that they usually come with a size constraint, and consume
additional resources when you increase the maximum size. VA FileMan word-processing fields, on the
other hand, are unlimited in size. Thus, you could choose a default size such as 32K for your memo-type
columns. In case truncation occurs, you should return an error for word-processing fields whose contents
exceed your default size.

VA FileMan Indexes

VA FileMan regular-type cross references are projected by SQLI as tables. Other types of cross-
references (Trigger, KWIC, MUMPS, Mnemonic, Soundex, and Bulletin) are not projected. Cross-
references are primarily for vendor optimization, and should not be made available as tables to end-users.

Tables derived from cross-references use names based on the name of the indexed table followed by
"_Xs_" where "s" is the index subscript, followed by the name of the column indexed
(PATIENT_XB_NAME, PATIENT_XSSN_SOCIAL_SEC_NUMBER, etc.) Compression is used such
that all names are no longer than 30 characters. For example:

PATIENT_CANCER_STATUS_CODE (table name)
PATIENT_CANC_STAT_CODE_XB_NAME ("B" index table name - compressed)

Figure 4-3: Sample naming convention of tables derived from cross-reference

4-6 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

A table is projected for a cross-reference if its T_MASTER_TABLE field is populated. For multiples,
there are two kinds of references, both of which are projected as tables by SQLI: regular and whole-file
cross-references.

The following example shows the various parts of the table projected for a simple cross-reference for a
top level file (the PATIENT file [#2]):

NUMBER: 4650 T_NAME: PATIENT_XB_NAME
 T_SCHEMA: SQLI T_COMMENT: Index of PATIENT by NAME
 T_MASTER_TABLE: PATIENT T_VERSION_FM: 1
 T_UPDATE: MAY 05, 1997 T_GLOBAL: ^DPT("B",{K},{K})

Figure 4-4: Table projected for "B" index of the PATIENT file (#2)

>D ^%G

Global ^DMSQ("E","F",4650
 DMSQ("E","F",4650
^DMSQ("E","F",4650,"C",53797) =
^DMSQ("E","F",4650,"C",53798) =
^DMSQ("E","F",4650,"P",53796) =

NUMBER: 53796 E_NAME: PATIENT_XB_NAME_PK
 E_DOMAIN: PATIENT_XB_NAME_ID E_TABLE: PATIENT_XB_NAME
 E_TYPE: Primary key
 E_COMMENT: Primary key header for PATIENT_XB_NAME

NUMBER: 53797 E_NAME: NAME
 E_DOMAIN: CHARACTER E_TABLE: PATIENT_XB_NAME
 E_TYPE: Column
 E_COMMENT: Index Primary Key #1 for PATIENT_XB_NAME.NAME

NUMBER: 53798 E_NAME: PATIENT_ID
 E_DOMAIN: INTEGER E_TABLE: PATIENT_XB_NAME
 E_TYPE: Column
 E_COMMENT: Index Primary Key #2 for PATIENT_XB_NAME.PATIENT_ID

Figure 4-5: Table elements projected for PATIENT_XB_NAME

>D ^%G
Global ^DMSQ("C","B",53797:53798
 DMSQ("C","B",53797:53798
^DMSQ("C","B",53797,43834) =
^DMSQ("C","B",53798,43835) =
Global ^

NUMBER: 43834 C_TABLE_ELEMENT: NAME
C_GLOBAL: ^DPT("B",

NUMBER: 43835 C_TABLE_ELEMENT: PATIENT_ID
C_PARENT: NAME C_GLOBAL: ,

Figure 4-6: Columns projected for PATIENT_XB_NAME

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 4-7
Revised January 2005 DI*21.0*38

File References

>D ^%G
Global ^DMSQ("P","C",53796
 DMSQ("P","C",53796
^DMSQ("P","C",53796,1,8529) =
^DMSQ("P","C",53796,2,8530) =

NUMBER: 8429 P_TBL_ELEMENT: PATIENT_XB_NAME_PK
P_COLUMN: NAME P_SEQUENCE: 1

NUMBER: 8530 P_TBL_ELEMENT: PATIENT_XB_NAME_PK
P_COLUMN: PATIENT_ID P_SEQUENCE: 2

Figure 4-7: Primary key projected for PATIENT_XB_NAME

Figure 4-8: Partial index listing

In the example above, the primary key is a two-part key, based on two columns: the "NAME" and
"PATIENT_ID" columns. The global path to "entries" in the index table is ^DPT("B",{K},{K}).

One part of the key is not IEN-based, but instead is the indexed value.

For indexes whose indexed value exceeds 30 characters, a "key format" is provided that provides the
transformation between the actual indexed column's field values, and the truncated-to-30 character
version of the column values that appears in the index. For more information, see the description of the
SQLI_KEY_FORMAT file (#1.5213).

5. File References

In the descriptions of SQLI files that follow, each file description contains:

• Global root of the SQLI file.

• VA FileMan data dictionary number of the SQLI file.

• All available cross references for traversing the SQLI file's entries.

• A listing of each field, with the field name, type, location, and description.

• Additional information about the purpose of the file and its fields.

• A description of the format of any code fragments supplied by this file.

5-8 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

In the tables on the following pages, SQLI field names followed by an asterisk
(e.g., "S_NAME*") are never NULL when the SQLI files are populated by SQLI. This
documentation convention is used to indicate that such fields are key fields for each SQLI file.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-9
Revised January 2005 DI*21.0*38

File References

SQLI_SCHEMA File

Global Root: ^DMSQ("S",

VA FileMan Number: 1.521

Indexes:

B: ^DMSQ("S","B",$E(S_NAME,1,30),ien)=""

Figure 5-1: SQLI_SCHEMA file—Index

Field Name Type Node;
Piece

Description

S_NAME* Free Text 0;1 Schema name (valid SQL identifier).

S_SECURITY Free Text 1;1 Not yet implemented; for future use. M routine to
check security privileges on a particular schema.

S_DESCRIPTION Free Text 0;2 A short description of the mapped application
group.

Table 5-1: SQLI_SCHEMA file—Fields

Purpose: The SQLI_SCHEMA file (#1.521) provides a place for SQLI to associate tables with a schema
name. This allows each VA FileMan file to be automatically mapped to a schema.

Currently, SQLI automatically projects all tables as part of one schema, "SQLI". SQLI does not provide
facilities for dividing VA FileMan files into separate schemas.

5-10 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

SQLI_KEY_WORD File

Global Root: ^DMSQ("K",

VA FileMan Number: 1.52101

Indexes:

B: ^DMSQ("K","B",$E(KEY_WORD,1,30),ien)=""

Figure 5-2: SQLI_KEY_WORD file—Index

Field Name Type Node;
Piece

Description

KEY_WORD Free Text 0;1 SQL, ODBC, or vendor keyword to reserve.

Table 5-2: SQLI_KEY_WORD file—Field

Purpose: This file is the collection point for keywords that should not be used for SQL entity names. You
can add any keywords specific to your own SQL implementation through the KW^DMSQD entry point.

The SQLI_KEY_WORD file (#1.52101) may not be populated with any key words at all. So you (the M-
to-SQL vendor) should use the KW^DMSQD entry point to populate this SQLI_KEY_WORD file
(#1.52101):

• Any keywords specific to your (vendor) M-to-SQL product

• The standard set of reserved keywords for SQL as defined by the ANSI standard for SQL

• The keywords for ODBC as defined by Microsoft

In your instructions to sites using your SQLI mapper, make sure that adding your keywords to the
SQLI_KEY_WORD file (#1.52101) is done prior to the site generating their first SQLI projection.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-11
Revised January 2005 DI*21.0*38

File References

SQLI_DATA_TYPE File

Global Root: ^DMSQ("DT",

VA FileMan Number: 1.5211

Indexes:

B: ^DMSQ("DT","B",$E(D_NAME,1,30),ien)=""

Figure 5-3: SQLI_DATA_TYPE file—Indexes

Field Name Type Node;
Piece

Description

D_NAME* Free Text 0;1 Data type name (should be a valid SQL
identifier).

D_COMMENT Free Text 0;2 Brief description.

D_OUTPUT_STRATEGY Mumps Extract
Storage

Node 1,

1-245

Not yet implemented; for future use.
Intended for future data types (pictures,
formatted word-processing, etc.) that VA
FileMan might support in the future.

D_OUTPUT_FORMAT Pointer to
SQLI_
OUTPUT_
FORMAT

0;3 Not implemented in the first version of
SQLI. Pointer to an Output Format to use
for columns whose domains point to this
data type.

Table 5-3: SQLI_DATA_TYPE file—Fields

Purpose: The SQLI_DATA_TYPE file (#1.5211) is a simple list of SQL standard data types
(BOOLEAN, CHARACTER, DATE, INTEGER, MEMO, MOMENT, NUMERIC, TIME) with one
additional type, PRIMARY_KEY. This allows the custom VA FileMan domains in the SQLI_DOMAIN
file (#1.5212) to always be associated with a specific base SQL data type.

SQL data types determine the SQL rules for comparing values from different domains, and the operators
that may be used on them. So each domain in the SQLI_DOMAIN file (#1.5212) has an explicit SQL data
type that SQL vendors should use.

The PRIMARY_KEY data type (and domain) is unique to SQLI. It is used to relate primary
keys to foreign keys unambiguously.

5-12 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

SQLI_DOMAIN File

Global Root: ^DMSQ("DM",

VA FileMan Number: 1.5212

Indexes:

B: ^DMSQ("DM","B",$E(DM_NAME,1,30),ien)=""
C: ^DMSQ("DM","C",$E(DM_TABLE,1,30),ien)=""
D: ^DMSQ("DM","D",$E(DM_FILEMAN_FIELD_TYPE,1,30),ien)=""
E: ^DMSQ("DM","E",$E(DM_DATA_TYPE,1,30),ien)=""

Figure 5-4: SQLI_DOMAIN file—Indexes

Field Name Type Node;
Piece

Description

DM_NAME* Free Text 0;1 Domain name (valid SQL identifier).

DM_DATA_TYPE* Pointer to
SQLI_DATA_
TYPE

0;2 Pointer to the SQL data type to use for this
domain.

DM_COMMENT Free Text 0;3 Brief description.

DM_TABLE Pointer to
SQLI_TABLE

0;4 If this domain is for a primary or foreign key,
points to the table of the primary key.

DM_WIDTH Numeric 0;5 Maximum width of external value.

DM_SCALE Numeric 0;6 Default number of decimal places, for
NUMERIC data types only.

DM_OUTPUT_FORMAT Pointer to
SQLI_OUTPUT
_FORMAT

0;7 Not implemented in the first version of SQLI.
Pointer to an Output Format to use for
columns that use this domain.

DM_INT_EXPR Mumps Extract
Storage

Node 1,

1-245

M expression to convert base value to internal
(VA FileMan) format.

DM_INT_EXEC Mumps Extract
Storage

Node 2,

1-245

M execute statement to convert base value to
internal (VA FileMan) format.

DM_BASE_EXPR Mumps Extract
Storage

Node 3,

1-245

M expression to convert internal (VA FileMan)
value to base format.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-13
Revised January 2005 DI*21.0*38

File References

Field Name Type Node;
Piece

Description

DM_BASE_EXEC Mumps Extract
Storage

Node 4,

1-245

M execute statement to convert internal (VA
FileMan) value to base format.

DM_FILEMAN_FIELD_
TYPE

Set of codes 0;8 'F' FOR FREE TEXT

'N' FOR NUMERIC

'P' FOR POINTER

'D' FOR DATE

'W' FOR WORD-PROCESSING

'K' FOR MUMPS

'C' FOR CALCULATED

'B' FOR BOOLEAN

'S' FOR SET

'V' FOR VARIABLE POINTER

Original VA FileMan field type for all elements
using this domain, for domains derived from
VA FileMan fields. Boolean means Boolean
Computed.

Table 5-4: SQLI_DOMAIN file—Fields

Purpose: Each entry in the SQLI_DOMAIN file (#1.5212) is a custom domain, which defines a set of
values from which all objects of this domain must be drawn. In SQLI, all table elements (columns,
primary keys, and foreign keys) have a domain that restricts them to their domain set.

Each domain points to a data type (from the SQLI_DATA_TYPE file [#1.5211]) which should be used as
the SQL data type for this domain. Other fields in the SQLI_DOMAIN file (#1.5212) also constrain the
set of possible values for the domain. For more information see Mapping VA FileMan Fields to SQL Data
Types earlier in this chapter.

Code Fragment Formats

 DM_INT_EXPR: $S({B}="":0,1:{B})
(provide {B}, evaluates to internal FileMan form)

 DM_BASE_EXPR: $S({I}:{I},1:"")
(provide {I}, evaluates to base form)

 DM_INT_EXEC: S %H={B} D YMD^%DTC S {I}=X
(provide {B}, get {I} back)

 DM_BASE_EXEC: N %H,X S X={I} D H^%DTC S {B}=%H
(provide {I}, get {B} back)

5-14 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

SQLI_KEY_FORMAT File

Global Root: ^DMSQ("KF",

VA FileMan Number: 1.5213

Indexes:

B: ^DMSQ("KF","B",$E(KF_NAME,1,30),ien)=""
C: ^DMSQ("KF","C",$E(KF_DATA_TYPE,1,30),ien)=""

Figure 5-5: SQLI_KEY_FORMAT file—Indexes

Field Name Type Node;
Piece

Description

KF_NAME* Free Text 0;1 Key format name.

KF_DATA_TYPE* Pointer to
SQLI_DATA_TYPE

0;2 Pointer to data type used by associated
primary key (should always point to
PRIMARY_KEY data type).

KF_COMMENT Free Text 0;3 Brief description.

KF_INT_EXPR Mumps Extract
Storage

Node 1,

1-245

M expression to convert internal value {I}
of indexed field to index primary key value
{K}.

KF_INT_EXEC Mumps Extract
Storage

Node 2,

1-245

M executable code to set internal value {I}
of indexed field to index primary key value
{K}.

Table 5-5: SQLI_KEY_FORMAT file—Fields

Purpose: Use the conversions provided in the SQLI_KEY_FORMAT file (#1.5213) to translate between
a column's value and the part of a primary key that uses that column. In most cases, a conversion from
column value to key value is not needed.

Currently, the main situation in which a conversion is provided is for the VA FileMan indexes that are
projected as tables. The index subscript is considered part of the primary key of the projected table for an
index. Currently, the (regular) index subscript for a VA FileMan file is based on the field value, but is
subject to truncation to 30 characters. So the value of the part of the key based on a column could differ
from the value of the column itself. A standard key format is supplied and linked to all parts of primary
keys that use index subscripts, whose indexed fields' maximum length exceeds 30 characters.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-15
Revised January 2005 DI*21.0*38

File References

Code Fragment Formats

 KF_INT_EXPR: $E({I},1,30)
(provide {I}, key is returned)

 KF_INT_EXEC: S {K}=$E({I},1,30)
(provide {I}, get {K} back)

5-16 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

SQLI_OUTPUT_FORMAT File

Global Root: ^DMSQ("OF",

VA FileMan Number: 1.5214

Indexes:

B: ^DMSQ("OF","B",$E(OF_NAME,1,30),ien)=""

Figure 5-6: SQLI_OUTPUT_FORMAT file—Index

Field Name Type Node;
Piece

Description

OF_NAME* Free Text 0;1 Output format name.

OF_DATA_TYPE* Pointer to
SQLI_DATA_
TYPE

0;2 Pointer to the data type for which this output
format applies.

OF_COMMENT Free Text 0;3 Brief description.

OF_EXT_EXPR Mumps Extract
Storage

Node 1,

1-245

M expression to convert base value to external
value.

OF_EXT_EXEC Mumps Extract
Storage

Node 2,

1-245

Will not be implemented for the first version of
SQLI (patch DI*21*38). M executable code to
convert base value to external value.

Table 5-6: SQLI_OUTPUT_FORMAT file—Fields

Purpose: Given the base column value derived from a VA FileMan field, entries in the
SQLI_OUTPUT_FORMAT file (#1.5214) provide M code to generate the external value to present to the
end-user for the column in question.

Columns do not need an output format if the base column data format is the same as its external data
format. Output formats are therefore provided only for columns derived from Pointer and Set of Codes
VA FileMan field types.

When looking for whether an output format is provided for a column, use the column's output format if
one exists. Next, check the column's domain for an output format only if one is not found for the column.
Finally, check the domain's data type for an output format if one is not found for the domain.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-17
Revised January 2005 DI*21.0*38

File References

Code Fragment Formats

 OF_EXT_EXPR: $S('{B}:"",1:$$GET^DMSQU(9.4,{B}_",",.01))
(substitute base value for all {B} placeholders;
evaluates to external format of data).

5-18 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

SQLI_TABLE File

Global Root: ^DMSQ("T",

VA FileMan Number: 1.5215

Indexes:

B: ^DMSQ("T","B",$E(T_NAME,1,30),ien)=""
C: ^DMSQ("T","C",$E(T_FILE,1,30),ien)=""
D: ^DMSQ("T","D",$E(T_GLOBAL,1,30),ien)=""
E: ^DMSQ("T","E",$E(T_MASTER_TABLE,1,30),ien)=""

Figure 5-7: SQLI_TABLE file—Indexes

Field Name Type Node;
Piece

Description

T_NAME* Free Text 0;1 Table name (valid SQL identifier).

T_SCHEMA* Pointer to
SQLI_SCHEMA

0;2 Pointer to table's schema.

T_COMMENT Free Text 0;3 Brief description.

T_MASTER_TABLE Pointer to
SQLI_TABLE

0;4 Only populated if this table is projected for an
index (it points to the indexed table.)

T_VERSION_FM Numeric 0;5 Reserved for future use.

T_ROW_COUNT Numeric 0;6 Estimated number of rows in the table. This field
is not populated by the SQLI projection, but
instead by the ALLS^DMSQS and
STATS^DMSQS entry points.

T_FILE Numeric 0;7 VA FileMan data dictionary number of file,
subfile, or word-processing field the table is
derived from. It is null for tables that project
indexes.

T_UPDATE Date 0;8 Date table projection last updated.

T_GLOBAL Free Text extract
storage

node 1,
1-245

Global location of file entries. For documentation
purposes only; use the C_GLOBAL values in the
SQLI_COLUMN file (#1.5217) to determine the
global location of file entries in code.
Placeholders:{K}s in T_GLOBAL field values
signify each part of the primary key.

Table 5-7: SQLI_TABLE file—Fields

Purpose: Entries in the SQLI_TABLE file (#1.5215) project VA FileMan files, multiple fields, word-
processing fields, and indexes as tables.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-19
Revised January 2005 DI*21.0*38

File References

SQLI_TABLE_ELEMENT File

Global Root: ^DMSQ("E",

VA FileMan Number: 1.5216

Indexes:

B: ^DMSQ("E","B",$E(E_NAME,1,30),ien)=""
C: ^DMSQ("E","C",$E(E_DOMAIN,1,30),ien)=""
D: ^DMSQ("E","D",$E(E_TABLE,1,30),ien)=""
E: ^DMSQ("E","E",$E(E_TYPE,1,30),ien)=""
F: ^DMSQ("E","F",E_TABLE,E_TYPE,ien)=""
G: ^DMSQ("E","G",E_TABLE,E_NAME,ien)=""

Figure 5-8: SQLI_TABLE_ELEMENT file—Indexes

Field Name Type Node;
Piece

Description

E_NAME* Free Text 0;1 Table element name (a valid SQL
identifier). Foreign keys are distinguished
by the suffix _FK or _PFK, primary keys by
_PK.

E_DOMAIN* Pointer to
SQLI_DOMAIN

0;2 Pointer to the domain to use for the table
element.

E_TABLE* Pointer to
SQLI_TABLE

0;3 Pointer to the table the element is part of.

E_TYPE* Set of codes 0;4 Type of table element:

'C' FOR COLUMN
'F' FOR FOREIGN KEY
'P' FOR PRIMARY KEY

E_COMMENT Free Text 0;5 Brief description.

Table 5-8: SQLI_TABLE_ELEMENT file—Fields

Purpose: In SQL Data Definition Language (DDL), a table is defined by the DDL command:

CREATE TABLE <table-name> (table-element-commalist)

Figure 5-9: DDL command to define a table

5-20 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

There is one entry in the SQLI_TABLE_ELEMENT file (#1.5216) for each table element (columns,
primary keys, and foreign keys) that should be the included in a CREATE TABLE command for each
table projected in SQLI.

Entries in this file contain the two essential elements of an attribute in the relational model: attribute-name
(E_NAME) and domain (E_DOMAIN). Elements not defined in the relational model, but necessary for
physical mapping and formatting of table elements are contained in SQLI_COLUMN (#1.5217),
SQLI_PRIMARY_KEY (#1.5218), and SQLI_FOREIGN_KEY (#1.5219) files.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-21
Revised January 2005 DI*21.0*38

File References

SQLI_COLUMN File

Global Root: ^DMSQ("C",

VA FileMan Number: 1.5217

Indexes:

B: ^DMSQ("C","B",$E(C_TABLE_ELEMENT,1,30),ien)=""
C: ^DMSQ("C","C",$E(C_PARENT,1,30),ien)=""
D: ^DMSQ("C","D",C_FILE,C_FIELD,ien)=""
E: ^DMSQ("C","E",$E(C_OUTPUT_FORMAT,1,30),ien)=""

Figure 5-10: SQLI_COLUMN file—Indexes

Field Name Type Node;
Piece

Description

C_TBL_ELEMENT* Pointer to
SQLI_TABLE_
ELEMENT

0;1 Pointer to the table element entry that this
column is associated with.

C_FILE Numeric 0;5 Corresponding VA FileMan file number, if
column was derived from a data dictionary field.

C_WIDTH Numeric 0;2 Maximum display width of column.

C_SCALE Numeric 0;3 Default number of decimal points for NUMERIC
data type only. If scale is specified as 0, the
column is projected as INTEGER.

C_FIELD Numeric 0;6 Corresponding VA FileMan field number, if
column was derived from a data dictionary field.

C_NOT_NULL Set of codes 0;7 1 if column is required in VA FileMan; 0 if not.

C_SECURE Set of codes 0;8 Not yet implemented; for future use.

C_VIRTUAL Set of codes 0;9 1 if column is derived from a computed field, 0 if
not. If true, the corresponding field value must
be retrieved using a DBS call (one is provided
for this in the C_FM_EXEC field.)

5-22 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

Field Name Type Node;
Piece

Description

C_PARENT Pointer to
SQLI_COLUMN(
#1.5217)

0;10 Populated if the global reference in the
C_GLOBAL field is not a global root. Points to
the column containing the next higher piece of
the global reference (in C_GLOBAL) to which
the current file level's key value and C_GLOBAL
string should be appended to create the full
global reference to the column's data.

• Null for computed field columns (no
permanent storage).

• Null for IEN columns of top-level files
(already at the highest level).

• Null for the first index subscript column of
an index table.

C_GLOBAL Mumps Extract
Storage

node 1,

1-245

For columns with permanent storage, partial
global reference for the node where the
column's data is stored.

C_PIECE Numeric 0;11 For normally stored VA FileMan fields: The ^-
delimited piece of the VA FileMan node field is
stored in.

C_EXTRACT_FROM Numeric 0;12 For extract-storage type VA FileMan fields: The
first character extract position of the VA FileMan
node the field is stored in.

C_EXTRACT_THRU Numeric 0;13 For extract-storage type VA FileMan fields: The
last character extract position of the VA FileMan
node the field is stored in.

C_COMPUTE_EXE
C

Mumps Extract
Storage

node 2,

1-245

The internal M code VA FileMan uses to
calculate a computed field's value. Warning: This
code may depend on the existence of a full
FileMan context; the code in C_FM_EXEC is a
safer alternative.

C_FM_EXEC Mumps Extract
Storage

node 3,

1-245

M code to retrieve value of computed and
pointer fields. Uses the DBS $$GET1^DIQ call to
retrieve the field value.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-23
Revised January 2005 DI*21.0*38

File References

Field Name Type Node;
Piece

Description

C_POINTER Mumps Extract
Storage

node 4,

1-245

For columns derived from set of codes fields,
this field contains the pairs of internal and
external forms of each code separated by
semicolons. The internal and external forms of a
code are separated by colons. For example:

y:YES;n:NO;

For columns derived from pointer fields, this field
contains the global root of the referenced file.
For example:

DIC(4,

C_OUTPUT_
FORMAT

Pointer to
SQLI_OUTPUT_
FORMAT

0;4 Pointer to the output format to use for this
column, if one is needed, if the external format of
the data differs from the base format.

Table 5-9: SQLI_COLUMN file—Fields

Purpose: The SQLI_COLUMN file (#1.5217) contains the formatting and physical structure
specifications for each column table element in projected tables. Each entry in the SQLI_COLUMN file
(#1.5217) has a single corresponding SQLI_TABLE_ELEMENT file (#1.5216) entry that provides the
relational specifications (name and domain) for the column.

Code Fragment Formats

 C_GLOBAL: (ien columns, top-level file) ^DIZ(662000,

 (ien columns, subfile) ,"EX",

 (VA FileMan field columns) ,0)

 (Note: this field does not actually hold code, but
instead holds a global reference.)

 C_COMPUTE_EXEC: S X=$S($D(^DIA(DIA,D0,3)):^(3),1:"<deleted>")
(raw code from DD to set X to computed field value; may
require VA FileMan environment context that SQLI can't
provide - in the above example, the value of D0.)

 C_FM_EXEC: S {V}=$$GET^DMSQU(9.4901,"{K3},{K2},{K1},",.03)
(uses DBS call to set the variable you substitute in {V} to
the external value of the computed or pointer field. You must
substitute appropriate iens for all Placeholders:{K}s to
identify the entry in question.)

5-24 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

SQLI_PRIMARY_KEY File

Global Root: ^DMSQ("P",

VA FileMan Number: 1.5218

Indexes:

B: ^DMSQ("P","B",$E(P_TBL_ELEMENT,1,30),ien)=""
C: ^DMSQ("P","C",P_TBL_ELEMENT,P_SEQUENCE,ien)=""
D: ^DMSQ("P","D",$E(P_COLUMN,1,30),ien)=""

Figure 5-11: SQLI_PRIMARY_KEY file—Indexes

Field Name Type Node;
Piece

Description

P_TBL_ELEMENT* Pointer to
SQLI_TABLE_
ELEMENT

0;1 Associates this part of a table's primary key with
the single entry in the SQLI_TABLE_ELEMENT
file (#1.5216) that organizes the entire primary
key.

P_COLUMN* Pointer to
SQLI_COLUM
N

0;2 Pointer to the column on which this part of a
table's primary key is based.

P_SEQUENCE* Numeric
(integer)

0;3 Sequence number of this part of the table's
primary key. Use to determine what order to
combine primary key columns to assemble the
global path to an entry.

P_START_AT Free Text 0;4 M literal to initialize initial subscript value for a
$ORDER loop through this part of the list of
primary keys of a table.

P_END_IF Mumps Extract
Storage

node 1,

1-245

M expression which returns true when the
$ORDER loop started at P_START_AT reaches
the end of this part of the list of primary keys of a
table.

P_ROW_COUNT Integer 0;5 Estimated number entries for this part of the
primary key.

For a multi-part key for the projection of a subfile,
this would be set to the estimated number of
entries at the file level of this part of the key.

Populate this field with ALLS^DMSQS or
STATS^DMSQS, after SQLI generation.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-25
Revised January 2005 DI*21.0*38

File References

Field Name Type Node;
Piece

Description

P_PRESELECT Mumps Extract
Storage

node 2,

1-245

Not implemented; for future use.

Code to possibly reference files in other UCIs with
extended reference syntax.

P_KEY_FORMAT Pointer to
SQLI_KEY_F
ORMAT

0;6 Conversion to use when the primary key value is
different from the column it is based on. For
primary keys of index tables, a conversion is
provided to deal with the truncation of index
subscripts to 30 characters.

Table 5-10: SQLI_PRIMARY_KEY file—Fields

Purpose: Each entry in the SQLI_PRIMARY_KEY file (#1.5218) represents one part of the primary key
of a projected table.

The P_COLUMN field points to the table column on which this part of the primary key is derived from.

The entire primary key of a table is composed of one or more entries in the SQLI_PRIMARY_KEY file
(#1.5218). These entries are organized into a single key by the fact that they all point to the same single
entry in the SQLI_TABLE_ELEMENT file (#1.5216) representing the entire primary key, via the
P_TBL_ELEMENT field.

Code Fragment Formats

 P_START_AT: 0
(value to start a $ORDER loop at, to go through a file's
entries. Not necessarily = 0; the $ORDER loop through a list
of primary keys of a table starts at 0 and ends at '{K} for
all regular (data) tables. Other tables (indexes) will start
at null and end if null. So you can assume 'null' if
P_START_AT and P_END_IF fields aren't set.

 P_END_IF: '{K}
(substitute for {K} the current ien; use to terminate a
$ORDER loop through a file's entries. Not necessarily =
"'{K}" - see P_START_AT above.)

5-26 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

SQLI_FOREIGN_KEY File

Global Root: ^DMSQ("F",

VA FileMan Number: 1.5219

Indexes:

B: ^DMSQ("F","B",$E(F_TBL_ELEMENT,1,30),ien)=""

Figure 5-12: SQLI_FOREIGN_KEY file—Index

Field Name Type Node;
Piece

Description

F_TBL_ELEMENT* Pointer to
SQLI_TABLE_
ELEMENT

0;1 Associates this part of a table's foreign key
with the single entry in the
SQLI_TABLE_ELEMENT file (#1.5216)
that organizes the entire foreign key.

F_PK_ELEMENT* Pointer to
SQLI_PRIMARY_
KEY

0;2 Pointer to the part of the primary key of the
referenced table, that this part of the
foreign key corresponds with.

F_CLM_ELEMENT* Pointer to
SQLI_COLUMN

0;3 Pointer to the column in the current table
whose value should be "joined" with the
associated part of the primary key of the
referenced table.

Table 5-11: SQLI_FOREIGN_KEY file—Fields

Purpose: Each entry in the SQLI_FOREIGN_KEY file (#1.5219) represents one part of a foreign key of
a projected table.

As with primary keys, the entire foreign key of a table is composed of one or more entries in the
SQLI_FOREIGN_KEY file (#1.5219). These entries are organized into a single key by pointing to the
same SQLI_TABLE_ELEMENT file (#1.5216) entry, which then represents the entire foreign key.

A foreign key "pre-specifies" an explicit join between two tables. Foreign keys are projected for a table
by SQLI when a join is already explicit in VA FileMan. SQLI provides foreign keys for:

• Pointer fields. For columns derived from pointer fields, a foreign key is provided for each pointer
field.

• Subfiles. For table derived from subfiles, one foreign key is provided linking the subfile table to
each of its "parent" tables (i.e., one to every table that represents a file level above the subfile.)

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-27
Revised January 2005 DI*21.0*38

File References

SQLI_ERROR_TEXT File

Global Root: ^DMSQ("ET",

VA FileMan Number: 1.52191

Indexes:

B: ^DMSQ("ET","B",$E(ERROR_TEXT,1,30),ien)=""

Figure 5-13: SQLI_ERROR_TEXT file—Index

Field Name Type Node;
Piece

Description

ERROR_TEXT Free Text 0;1 SQLI error message

Table 5-12: SQLI_ERROR_TEXT file—Field

Purpose: The SQLI_ERROR_TEXT" file (#1.52191) holds a list of SQLI error messages generated
during the last SQLI projection. It is used by entries in the SQLI_ERROR_LOG file (#1.52192), to
indicate which type of SQLI error occurred during SQLI generation.

Entries in this file are purged at the start of each SQLI generation. The file is then populated with only
those errors that occur during the particular SQLI generation.

5-28 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 File References

SQLI_ERROR_LOG File

Global Root: ^DMSQ("EX",

VA FileMan Number: 1.52192

Indexes:

B: ^DMSQ("EX","B",$E(FILEMAN_FILE,1,30),ien)=""
C: ^DMSQ("EX","C",$E(ERROR,1,30),ien)=""
D: ^DMSQ("EX","D",$E(ERROR_DATE,1,30),ien)=""
E: ^DMSQ("EX","E",$E(FILEMAN_ERROR,1,30),ien)=""

Figure 5-14: SQLI_ERROR_LOG file—Indexes

Field Name Type Node;
Piece

Description

FILEMAN_FILE Numeric 0;1 VA FileMan file number being processed
when error occurred.

FILEMAN_FIELD Numeric 0;2 VA FileMan field number being processed
when error occurred.

ERROR Pointer to
SQLI_ERROR_T
EXT

0;3 Pointer to type of error.

ERROR_DATE Date 0;4 Date of SQLI generation.

FILEMAN_ERROR Pointer to VA
FileMan DIALOG
file (#.84)

0;5 If the error was generated during a DBS call,
and the DBS itself returned a particular
error, this points to the DIALOG file (#.84)
reference returned by the DBS call.

Table 5-13: SQLI_ERROR_LOG file—Fields

Purpose: The SQLI_ERROR_LOG file (#1.52192) is a log of all errors encountered when running the
SQLI generation.

You can print out the errors stored in this log directly through VA FileMan. You can also use the supplied
utility, MAIN^DMSQE, to print out the errors sorted by category of error.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 5-29
Revised January 2005 DI*21.0*38

File References

5-30 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

6. Application Program Interfaces (APIs)—Supported
References

SQLI provides a set of supported M routine application program interfaces (APIs). Some APIs are
intended for the use of M-to-SQL vendors; others are for general use. The supported APIs are as follows:

API Entry Point Description

SETUP^DMSQ Generate SQLI projection (non-interactive)

ALLF^DMSQF Generate SQLI projection (interactive)

KW^DMSQD Load keywords into the SQLI_KEY_WORD file (#1.52101)

ALLS^DMSQS Generate cardinality of all tables

STATS^DMSQS Generate cardinality of one table

$$CN^DMSQU Internal SQLI naming algorithm (column)

$$FNB^DMSQU Internal SQLI naming algorithm (table)

$$SQLI^DMSQU Internal SQLI naming algorithm (identifier)

$$SQLK^DMSQU Internal SQLI naming algorithm (identifier)

Table 6-1: SQLI APIs

For a full description of each entry point, see the "SQLI Technical Information" chapter of the VA
FileMan SQLI Site Manual.

In addition, all of SQLI's files, fields, and cross-references as distributed in patch DI*21*38 can be
referenced directly without integration agreements. This enables M-to-SQL vendors to create SQLI
mapping utilities using the SQLI file structures. Specifically, these are the files in the 1.52 to 1.53 number
range, all stored in ^DMSQ.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 6-1
Revised January 2005 DI*21.0*38

Application Program Interfaces (APIs)—Supported References

6-2 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

7. Other Issues

Domain Cardinality

Most domains have no known or absolutely determinable domain cardinality. Column types for which
domain cardinality can be determined are:

• Columns for Set of Codes fields: Take the C_POINTER field from the column derived from the
FileMan Set of codes field. $L(C_POINTER,":")-1 yields the cardinality for this column.

• Columns for Pointer fields: Use the P_ROW_COUNT value of the primary key of the pointed-to
table, or the T_ROW_COUNT of the pointed-to table. This assumes that P_ROW_COUNT and
T_ROW_COUNT have been populated for the table in question using either STATS^DMSQS or
ALLS^DMSQS APIs.

SQLI and Schemas

This version of SQLI projects all VA FileMan files as part of a single schema, "SQLI".

If SQLI were to project the same VA FileMan file as part of more than one schema, it would need to
project distinct, separate entries for the file in the SQLI_TABLE file (#1.5215) for each schema. So to
project the PATIENT file in four different schemas, four different SQLI_TABLE file (#1.5215) entries
would be projected, as well as four complete sets of table elements (columns, primary keys, and foreign
keys).

Ordinarily it's best not to project a given file in more than one schema; in any case, SQLI currently does
not support projecting the same file in multiple schemas.

SQL Identifier Naming Algorithms
:
By using consistent naming algorithms for files and fields, SQLI ensures that SQL table names for
national files and fields between VA sites are the same. In addition, the algorithms enforce syntactical
correctness and uniqueness of identifiers, and the exclusion of keywords from the naming of identifiers.

The following conventions are followed for table and table element names:

• Names are 1 to 30 characters long.

• Must start with a letter from A to z.

• May contain only the letters A through z, digits 0 through 9 and the underline character "_".

• No repeating or trailing underlines are used.

• Names are case insensitive ("a" means the same as "A").

• SQL and vendor-specific keywords may not be used as names.

• Table names must be unique within each schema.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 7-1
Revised January 2005 DI*21.0*38

Other Issues

• Table element names (column, primary key, foreign key) must be unique within each table.

• If the name is too long it is compressed by removing vowels.

Under very unusual circumstances, the naming algorithms can produce a different field or file name
between sites. The known circumstances that could produce a difference are as follows:

• The names of local files or fields result in a conflict with the naming of a national file or field.

• A difference in the excluded keyword list maintained in SQLI_KEY_WORD file (#1.52101)
between sites results in a naming conflict at one site, and no conflict at another.

• National packages not loaded at a particular site avoid a naming conflict that otherwise would
occur.

Which Objects Are Processed Through Naming Algorithms?
:
Tables and table element (column, primary key, and foreign key) names are generated through dynamic
naming algorithms. Names for domains, data types, and output formats are manually assigned SQL-
compatible names, but are not processed through the SQLI naming algorithms.

VA Business Rules and Insert/Update/Delete Operations

You may want to update VA FileMan files from SQL. Explicit support for vendors to implement Insert,
Update, and Delete operations is not implemented in the first version of SQLI (patch DI*21*38).

A caution for implementing these types of access to VA FileMan data is that business rules are quite often
not stored in VA FileMan data dictionaries. A significant portion of the business rules in VistA
applications reside in application code. Updating that does not go through application software cannot
execute business rules stored solely in application code, and can cause data corruption by circumventing
business rules.

SQLI Implementation Notes

• .001 Number Fields. The optional .001 number field for a file, if defined, represents the IEN of
entries. Such fields are not projected as columns by SQLI. You can access this value using the
TABLE_ID column (the IEN column), which SQLI does project for all tables.

• Asterisked Files. Any files or subfiles whose names start with an asterisk are not projected in
SQLI. Note: Adding an asterisk to the beginning of a field name is a VA Programming SAC
convention to mark the field as obsolete.

• Dangling Pointers. It is possible that a VA FileMan field may contain a pointer to a file not
actually present at a given site. If so, the field is projected as a normal pointer field would be, but
without the corresponding output format that permits navigation along a pointer chain to resolve
the external value of the pointer. Such fields are flagged in the SQLI_ERROR_LOG file
(#1.52192) during SQLI generation as "Pointer to Absent Files". Foreign keys for such fields are
not constructed.

7-2 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Other Issues

• Field Attributes Not Projected. Along with number, the following field attributes are projected
by SQLI: Label, field length, type, specifier, global subscript location, pointer, multiple-valued,
and the first line of the field's description. Other field attributes, including output transforms and
pointer screens, are not projected.

For more information about field attributes, please refer to the "Global File Structure"
chapter in the VA FileMan Programmer Manual.

• File Attributes Not Projected. Only file name and number are projected. Other file attributes,
such as Special Lookup and Screens, are not.

For more information about file attributes, please refer to the "Global File Structure"
chapter in the VA FileMan Programmer Manual.

• Files Not in ^DIC. Only files with entries in ^DIC (the dictionary of files) are projected. This
means only VA FileMan-compatible files are projected.

• Internal VA FileMan Tables Not Projected. Certain tables used by VA FileMan internally
(numbered below two) are not projected. Errors are logged during SQLI projection in the
SQLI_ERROR_LOG file (#1.52192). VA FileMan DD numbers in this category include: .001, .1,
.12, .15, .21, .3, 1.001, and 1.01.

• Multiline Computed Fields. Values are not returned for multiline computed fields, since DBS
calls cannot retrieve multiline computed fields. An example of a multiline computed field is a
backward extended pointer reference.

• Non-regular Cross-references. Only regular VA FileMan cross-references are projected. VA
FileMan Trigger, KWIC (Key Word in Context), MUMPS, Mnemonic, Soundex, and Bulletin
type indexes are absent from SQLI. Cross-references are only projected for possible
optimizations by M-to-SQL vendors.

• Output Transforms. Output transforms are not projected. If formatting needs to be applied, it
can be applied at the SQL vendor column level. For more elaborate output transforms that may
call routines for processing, the logic will need to be reproduced in the context of the query.
Depending on your M-to-SQL product's capability, the external value of a field (after the output
transform is applied) could be returned by a user-defined function that invokes the VA FileMan
$$EXTERNAL^DILF API call.

• Variable Pointers. Variable pointers are projected as text only. Their text value is resolved, but
presented as text.

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) 7-3
Revised January 2005 DI*21.0*38

Other Issues

7-4 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

Glossary

BASE VALUE The stored value of a column in SQL, not transformed in any way.

CARDINALITY The cardinality of a table is its number of rows; the cardinality of a
domain is the number of possible values in the domain.

COLUMN A set of values for a particular value sequence in a row, for each row
in a table (akin to a VA FileMan field). All values in a column must
be of the same data type or domain.

DATA TYPE A set of possible values. SQL has its own set of standard data types;
SQL vendors often implement additional data types.

DATA DICTIONARY A file that defines a file's structure, to include a file's fields and
relationships to other files.

DBA Database Administrator for an SQL system. The DBA has, by default,
full privileges to every object in the database.

DBS Database Server. DBS is a non-interactive VA FileMan API. It makes
no writes to the screen. It provides client/server access to VA FileMan
data. DBS calls of particular interest to M-to-SQL vendors using
SQLI include $$GET1^DIQ, FIELD^DID, and
$$EXTERNAL^DILFD.

DCL Data Control Language. The set of SQL statements through which
access to the database is controlled.

DDL Data Definition Language. The set of SQL statements through which
objects are created and modified in the database.

DML Data Manipulation Language. The set of SQL statements through
which data is modified.

DOMAIN A set of permissible values. A domain is based on a data type, but
may contain further constraints on what values are valid for the
domain.

EXTRACT STORAGE When the storage location for a particular VA FileMan field is
designated to be by position on a global node, instead of being
character-delimited.

FIELD TYPE The type of VA FileMan field. There are nine FileMan field types.
VA FileMan field types loosely correspond to the concept of data
type.

FOREIGN KEY A foreign key acts as a ready-to-use join between two tables. It
matches a set of columns in one table to the primary key in another
table.

HIERARCHICAL DATABASE A database structure in which files can own or belong to each other.
Often referred to as a parent-child structure.

IEN Internal entry number. This is the numeric subscript beneath a file's
global root under which all of the data for a given VA FileMan file

October 1997 VA FileMan SQLI Vendor Manual Glossary-1
Revised January 2005 DI*21.0*38

Glossary

entry is stored.

IEN COLUMN A column SQLI projects to contain the IEN of a VA FileMan entry.

JOIN In SQL, a join is when two or more tables are combined into a single
table based on column values in an SQL SELECT statement.

M-TO-SQL PRODUCT Software that can view structured M globals as relational tables
through SQL.

MULTIPLE-VALUED FIELD A VA FileMan filed that allows more than one value for a single
entry. See also Subfile.

ODBC Open Database Connectivity. ODBC is Microsoft's solution to enable
client access to heterogeneous databases.

OUTER JOIN A join between two tables, where rows from one table are present in
the joined table, even when there are no corresponding rows from the
other table.

OUTPUT FORMATS Output formats are provided by SQLI to convert column base values
into a format suitable for external use by end-users.

PRIMARY KEY A designated set of columns in a table whose values uniquely identify
any row in the table.

QUERY An SQL command that extracts information from an SQL database.

RELATIONAL DATABASE A database that is a collection of tables, and whose operations follow
the relational model.

ROW A sequence of values in a table, representing one logical record.

SCHEMA A schema defines a portion of an SQL database as being owned by a
particular user.

SQL Structured Query Language, the predominant language and set of
facilities for working with relational data. The current ANSI
(American National Standards Institute) standard for SQL is X3.135-
1992.

SQLI MAPPER Software written by an M-to-SQL vendor that maps the vendor's SQL
data dictionaries directly to VA FileMan data, using the information
projected by SQLI.

SUBFILE The data structure of a multiple-valued field. In many respects, a
subfile has the same characteristics as a file.

TABLE A collection of rows, where each row is the equivalent of a record. A
base table (one not derived from another table) is the SQL equivalent
of a database file.

TABLE ELEMENT a column, primary key, or foreign key that is part of a table.

VIEW A user-defined subset of tables, based on a SELECT statement,
containing only selected rows and columns.

.01 FIELD A field that exists for every VA FileMan file, and that is used as the
primary lookup value for a record.

Glossary-2 VA FileMan SQLI Vendor Manual October 1997
 DI*21.0*38 Revised January 2005

 Glossary

For a comprehensive list of commonly used infrastructure- and security-related terms and
definitions, please visit the ISS Glossary Web page at the following Web address:

http://vista.med.va.gov/iss/glossary.asp

For a list of commonly used acronyms, please visit the ISS Acronyms Web site at the following
Web address:

http://vista/med/va/gov/iss/acronyms/index.asp

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) Glossary-3
Revised January 2005 DI*21.0*38

http://vista.med.va.gov/iss/glossary.asp
http://vista/med/va/gov/iss/acronyms/index.asp

Glossary

Glossary-4 VA FileMan SQLI Vendor Manual October 1997
 DI*21.0*38 Revised January 2005

Appendix A—Quick Reference Card

October 1997 VA FileMan SQLI Vendor Manual A-1
Revised January 2005 DI*21.0*38

Appendi

A-2

x A—Quick Reference Card

VA FileMan SQLI Vendor Manual October 1997
DI*21.0*38 Revised January 2005

 Appendix A—Quick Reference Card

File# File Name Node Fields (Keys In Boxes) Cross References

1.521 S_NAME(B) SQLI_SCHEMA ^DMSQ("S",D0,0) (#.01) S_NAME [1F]

 (#2) S_DESCRIPTION [2F]

 ^DMSQ("S",D0,1) (#1) S_SECURITY [1F] *for future use

1.52101 SQLI_KEY_WORD ^DMSQ("K",D0,0) (#.01) KEY_WORD [1F] KEY_WORD(B)

1.5211 SQLI_DATA_TYPE ^DMSQ("DT",D0,0) (#.01) D_NAME [1F] D_NAME(B)

 (#1) D_COMMENT [2F]

 (#3) D_OUTPUT_FORMAT [3P] *for future use

 ^DMSQ("DT",D0,1) (#2) D_OUTPUT_STRATEGY [E1,245K] *for future use

1.5212 SQLI_DOMAIN ^DMSQ("DM",D0,0) (#.01) DM_NAME [1F] DM_NAME(B)

 (#1) DM_DATA_TYPE [2P] DM_DATA_TYPE(E)

 (#2) DM_COMMENT [3F]

 (#3) DM_TABLE [4P] DM_TABLE(C)

 (#4) DM_WIDTH [5N]

 (#5) DM_SCALE [6N]

 (#6) DM_OUTPUT_FORMAT [7P] *for future use

 (#11) DM_FILEMAN_FIELD_TYPE [8S] DM_FILEMAN_FIELD_TYPE(D)

 ^DMSQ("DM",D0,1) (#7) DM_INT_EXPR [E1,245K]

 ^DMSQ("DM",D0,2) (#8) DM_INT_EXEC [E1,245K]

 ^DMSQ("DM",D0,3) (#9) DM_BASE_EXPR [E1,245K]

 ^DMSQ("DM",D0,4) (#10) DM_BASE_EXEC [E1,245K]

1.5213 SQLI_KEY_FORMAT ^DMSQ("KF",D0,0) (#.01) KF_NAME [1F] KF_NAME(B)

 (#1) KF_DATA_TYPE [2P] KF_DATA_TYPE(C)

 (#2) KF_COMMENT [3F]

 ^DMSQ("KF",D0,1) (#3) KF_INT_EXPR [E1,245K]

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) A-3
Revised January 2005 DI*21*38

Appendix A—Quick Reference Card

File# File Name Node Fields (Keys In Boxes) Cross References

 ^DMSQ("KF",D0,2) (#4) KF_INT_EXEC [E1,245K]

1.5214 SQLI_OUTPUT_FORMA
T

^DMSQ("OF",D0,0) (#.01) OF_NAME [1F] OF_NAME(B)

 (#1) OF_DATA_TYPE [2P]

 (#2) OF_COMMENT [3F]

 ^DMSQ("OF",D0,1) (#3) OF_EXT_EXPR [E1,245K]

 ^DMSQ("OF",D0,2) (#4) OF_EXT_EXEC [E1,245K] *for future use

1.5215 SQLI_TABLE ^DMSQ("T",D0,0) (#.01) T_NAME [1F] T_NAME(B)

 (#1) T_SCHEMA [2P]

 (#2) T_COMMENT [3F]

 (#3) T_MASTER_TABLE [4P] T_MASTER_TABLE(E)

 (#4) T_VERSION_FM [5N]

 (#5) T_ROW_COUNT [6N]

 (#6) T_FILE [7N] T_FILE(C)

 (#7) T_UPDATE [8D]

 ^DMSQ("T",D0,1) (#8) T_GLOBAL [E1,245K] T_GLOBAL(D)

1.5216 SQLI_TABLE_ELEMENT ^DMSQ("E",D0,0) (#.01) E_NAME [1F] E_NAME(B)

 (#1) E_DOMAIN [2P] E_DOMAIN(C)

 (#2) E_TABLE [3P] E_TABLE(D)

 (#3) E_TYPE [4S] E_TYPE(E)

 (#4) E_COMMENT [5F] E_TABLE,E_NAME(G)

 E_TABLE,E_TYPE(F)

1.5217 SQLI_COLUMN ^DMSQ("C",D0,0) (#.01) C_TABLE_ELEMENT [1P] C_TABLE_ELEMENT(B)

 (#2) C_WIDTH [2N]

 (#3) C_SCALE [3N]

A-4 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Appendix A—Quick Reference Card

File# File Name Node Fields (Keys In Boxes) Cross References

 (#16) C_OUTPUT_FORMAT [4P] C_OUTPUT_FORMAT(E)

 (#1) C_FILE [5N] C_FILE,C_FIELD(D)

 (#4) C_FIELD [6N]

 (#5) C_NOT_NULL [7S]

 (#6) C_SECURE [8S]

 (#7) C_VIRTUAL [9S]

 (#8) C_PARENT [10P] C_PARENT(C)

 (#10) C_PIECE [11N]

 (#11) C_EXTRACT_FROM [12N]

 (#12) C_EXTRACT_THRU [13N]

 ^DMSQ("C",D0,1) (#9) C_GLOBAL [E1,245K]

 ^DMSQ("C",D0,2) (#13) C_COMPUTE_EXEC [E1,245K]

 ^DMSQ("C",D0,3) (#14) C_FM_EXEC [E1,245K]

 ^DMSQ("C",D0,4) (#15) C_POINTER [E1,245K]

1.5218 SQLI_PRIMARY_KEY ^DMSQ("P",D0,0) (#.01) P_TBL_ELEMENT [1P] P_TBL_ELEMENT(B)

 (#1) P_COLUMN [2P] P_COLUMN(D)

 (#2) P_SEQUENCE [3N] P_TBL_ELEMENT,P_
SEQUENCE(C)

 (#3) P_START_AT [4F]

 (#5) P_ROW_COUNT [5N]

 (#7) P_KEY_FORMAT [6P]

 ^DMSQ("P",D0,1) (#4) P_END_IF [E1,245K]

 ^DMSQ("P",D0,2) (#6) P_PRESELECT [E1,245K] *for future use

1.5219 SQLI_FOREIGN_KEY ^DMSQ("F",D0,0) (#.01) F_TBL_ELEMENT [1P] F_TBL_ELEMENT(B)

 (#1) F_PK_ELEMENT [2P]

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) A-5
Revised January 2005 DI*21.0*38

x A—Quick Reference Card

VA FileMan SQLI Vendor Manual (DRAFT) October 1997
DI*21.0*38 Revised January 2005

File Name Node Fields (Keys In Boxes) Cross References

 (#2) F_CLM_ELEMENT [3P]

1.52191 SQLI_ERROR_TEXT ^DMSQ("ET",D0,0) (#.01) ERROR_TEXT [1F] ERROR_TEXT (B)

1.52192 SQLI_ERROR_LOG ^DMSQ("EX",D0,0) (#.01) FILEMAN_FILE [1N] FILEMAN_FILE(B)

 (#1) FILEMAN_FIELD [2N]

 (#2) ERROR [3P] ERROR(C)

 (#3) ERROR_DATE [4D] ERROR_DATE(D)

 (#4) FILEMAN_ERROR [5P] FILEMAN_ERROR(E)

Table A-1: SQLI Quick Reference Card

Appendi

A-6

File#

Index

$
$ORDERING to Loop Through a File's Data

Entries, 3-11

A
About

Table Elements, 3-5
Acronyms (ISS)

Home Page Web Address, Glossary, 3
Algorithms

SQL Identifier Naming Algorithms, 7-1
Which Objects Are Processed Through

Naming Algorithms, 7-2
ALLS^DMSQS, 7-1
APIs

ALLS^DMSQS, 7-1
STATS^DMSQS, 7-1

Appendix A—Quick Reference Card, A, 1
Application Program Interfaces (APIs), 6-1
Assembling Record Locations, 3-11
Assumptions About the Reader, xvi
Asterisked Files, 7-3

B
Base to External Conversions, 3-14
Base to Internal Conversions, 3-14
Building an SQLI Mapper, 2-1
Business Rules, 7-2

C
C_COMPUTE_EXEC Field, 5-19
C_EXTRACT_FROM Field, 3-13, 5-19
C_EXTRACT_THRU Field, 3-13, 5-19
C_FIELD Field, 5-17
C_FILE Field, 5-17
C_FM_EXEC Field, 3-2, 3-13, 4-3, 5-18, 5-19
C_GLOBAL Field, 3-7, 3-11, 3-12, 3-13, 4-8, 5-

14, 5-18, 5-20
C_NOT_NULL Field, 5-17
C_OUTPUT_FORMAT Field, 3-15, 5-17, 5-20
C_PARENT Field, 5-18
C_PIECE Field, 3-13, 5-18
C_POINTER Field, 5-19, 7-1

C_SCALE Field, 5-17
C_SECURE Field, 5-18
C_TBL_ELEMENT Field, 5-17
C_VIRTUAL Field, 3-13, 4-3, 5-18
C_WIDTH Field, 5-17
Callout Boxes, xiv
Cardinality

Domain, 7-1
Columns

IEN, 3-7, 4-3, 5-18
Processing, 3-6
Retrieving Column Values, 3-13

Through a DBS Call, 3-13
Value Conversions, 3-14

Compatibility
Kernel, 2-5

Computed Fields, 3-13, 4-3, 5-18
Contents, v
Conversions

Columns Value Conversions, 3-14
Domain Conversions (Base to Internal), 3-14
Output Format Conversions (Base to

External), 3-14
Cross-references

Non-regular, 7-4

D
D_COMMENT Field, 5-4
D_NAME Field, 5-4
D_OUTPUT_FORMAT Field, 3-15, 5-4
D_OUTPUT_STRATEGY Field, 5-4
DA RETURN CODES File (#3.22), 3-3, 3-4, 3-

9
DA_RETURN_CODES Table, 3-6
Dangling Pointers, 7-3
Data Dictionary

Data Dictionary Utilities Menu, xv
Listings, xv
Synchronization, 2-4

Data Storage of Entries, 3-11
Date Fields, 4-3
DBS Calls, 1-1, 3-13, 4-3, 4-4, 5-18, 5-19, 5-27
Delete

Operations, 7-2
SQL, 7-2

DIALOG File (#.84), 5-27

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) Index-1
Revised January 2005 DI*21*38

Index

DM_BASE_EXEC Field, 3-14, 4-3, 5-7, 5-8
DM_BASE_EXPR, 5-8
DM_BASE_EXPR Field, 3-14, 5-7
DM_COMMENT Field, 5-6
DM_DATA_TYPE Field, 5-6
DM_FILEMAN_FIELD_TYPE Field, 4-3, 5-8
DM_INT_EXEC Field, 3-14, 4-3, 5-7, 5-8
DM_INT_EXPR Field, 3-14, 5-7
DM_NAME Field, 5-6
DM_OUTPUT_FORMAT Field, 3-15, 5-7
DM_SCALE Field, 5-7
DM_TABLE Field, 5-6
DM_WIDTH Field, 5-6
Documentation

Revisions, iii
Symbols, xiii

Domain Cardinality, 7-1
Domain Conversions (Base to Internal), 3-14
Domains

FM_BOOLEAN, 3-14
FM_DATE, 3-14
FM_MOMENT, 3-14

E
E_COMMENT Field, 5-16
E_DOMAIN Field, 5-15
E_NAME Field, 5-15
E_TABLE Field, 5-15
E_TYPE Field, 5-15
Elements

About Table Elements, 3-5
Entity-relationship Diagram, 2-3
Entry Data Storage, 3-11
Entry Locations, 3-11
Entry Points, 6-1
ERROR Field, 5-27
ERROR_DATE Field, 5-27
ERROR_TEXT Field, 5-26
EVS Anonymous Directories, xvii

F
F_CLM_ELEMENT Field, 5-24
F_PK_ELEMENT Field, 5-24
F_TBL_ELEMENT Field, 5-24
Fields

.001 Number, 7-3
Attributes Not Projected, 7-3
C_COMPUTE_EXEC, 5-19
C_EXTRACT_FROM, 3-13, 5-19

C_EXTRACT_THRU, 3-13, 5-19
C_FIELD, 5-17
C_FILE, 5-17
C_FM_EXEC, 3-2, 3-13, 4-3, 5-18, 5-19
C_GLOBAL, 3-7, 3-11, 3-12, 3-13, 4-8, 5-18,

5-20
C_NOT_NULL, 5-17
C_OUTPUT_FORMAT, 3-15, 5-17, 5-20
C_PARENT, 5-18
C_PIECE, 3-13, 5-18
C_POINTER, 5-19, 7-1
C_SCALE, 5-17
C_SECURE, 5-18
C_TBL_ELEMENT, 5-17
C_VIRTUAL, 3-13, 4-3, 5-18
C_WIDTH, 5-17
Computed, 3-13, 4-3, 5-18
D_COMMENT, 5-4
D_NAME, 5-4
D_OUTPUT_FORMAT, 3-15, 5-4
D_OUTPUT_STRATEGY, 5-4
Date, 4-3
DM_BASE_EXEC, 3-14, 4-3, 5-7, 5-8
DM_BASE_EXPR, 3-14, 5-7
DM_COMMENT, 5-6
DM_DATA_TYPE, 5-6
DM_FILEMAN_FIELD_TYPE, 4-3, 5-8
DM_INT_EXEC, 3-14, 4-3, 5-7, 5-8
DM_INT_EXPR, 3-14, 5-7
DM_NAME, 5-6
DM_OUTPUT_FORMAT, 3-15, 5-7
DM_SCALE, 5-7
DM_TABLE, 5-6
DM_WIDTH, 5-6
E_COMMENT, 5-16
E_DOMAIN, 5-15
E_NAME, 5-15
E_TABLE, 5-15
E_TYPE, 5-15
ERROR, 5-27
ERROR_DATE, 5-27
ERROR_TEXT, 5-26
F_CLM_ELEMENT, 5-24
F_PK_ELEMENT, 5-24
F_TBL_ELEMENT, 5-24
FILEMAN_ERROR, 5-27
FILEMAN_FIELD, 5-27
FILEMAN_FILE, 5-27
Free Text, 4-4

Index-2 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Index

How SQLI Translates VA FileMan Field
Types into SQL Columns, 4-5

KEY_WORD, 5-3
KF_COMMENT, 5-9
KF_DATA_TYPE, 5-9
KF_INT_EXEC, 5-9
KF_INT_EXPR, 5-9
KF_NAME, 5-9
Multiline Computed, 4-3, 7-3
Mumps, 4-4
Numeric, 4-4
OF_COMMENT, 5-11
OF_DATA_TYPE, 5-11
OF_EXT_EXEC, 5-12
OF_EXT_EXPR, 5-11
OF_NAME, 5-11
P_COLUMN, 5-21, 5-22
P_END_IF, 5-22, 5-23
P_ENDIF, 3-11
P_KEY_FORMAT, 5-22
P_PRESELECT, 5-22
P_ROW_COUNT, 5-22, 7-1
P_SEQUENCE, 3-2, 3-8, 3-9, 3-10, 3-12, 4-8,

5-21
P_START_AT, 3-9, 3-10, 3-11, 5-22, 5-23
P_START_AT, 5-23
P_START_AT, 5-23
P_TBL_ELEMENT, 5-21, 5-23
PATIENT_ID, 4-3
Pointer, 3-13, 3-16, 4-4, 5-12, 5-25, 7-1
S_DESCRIPTION, 5-2
S_NAME, 5-2
S_SECURITY, 5-2
Set of Codes, 4-4, 5-12, 7-1
T_COMMENT, 5-13
T_FILE, 5-14
T_GLOBAL, 3-12, 5-14
T_MASTER_TABLE, 4-7, 5-13
T_NAME, 5-13
T_ROW_COUNT, 5-14, 7-1
T_SCHEMA, 3-3, 5-13
T_UPDATE, 5-14
T_VERSION_FM, 5-14
Types (VA FileMan), 4-2
Variable Pointer, 2-2, 3-13, 4-4
Word-processing, 2-2, 3-16, 4-6, 5-14

FieldS
DM_INT_EXPR, 3-14

Figures and Tables, ix
FILEMAN_ERROR Field, 5-27

FILEMAN_FIELD Field, 5-27
FILEMAN_FILE Field, 5-27
Files

Asterisked, 7-3
Attributes Not Projected, 7-3
DA RETURN CODES (#3.22), 3-3, 3-4, 3-9
Definition Structures, 4-1
DIALOG (#.84), 5-27
NEW_PERSON (#200), 3-15
Not in ^DIC, 7-3
PATIENT (#2), 4-2, 4-3, 4-7
References, 5-1
SQLI_COLUMN (#1.5217), 3-2, 3-5, 3-6, 3-

7, 3-13, 3-15, 4-3, 4-4, 5-14, 5-16, 5-17, 5-
18, 5-20, 5-21, 5-24

SQLI_DATA_TYPE (#1.5211), 3-15, 5-4, 5-
8, 5-9, 5-11

SQLI_DOMAIN (#1.5212), 3-14, 3-15, 5-4,
5-5, 5-6, 5-8, 5-15

SQLI_ERROR_LOG (#1.52192), 5-26, 5-27,
5-28, 7-3

SQLI_ERROR_TEXT, 5-26
SQLI_FOREIGN_KEY (#1.5219), 3-5, 3-6,

5-16, 5-24, 5-25
SQLI_KEY_FORMAT (#1.5213), 4-9, 5-9, 5-

10, 5-22
SQLI_KEY_WORD (#1.52101), 2-4, 5-3, 6-

1, 7-2
SQLI_OUTPUT_FORMAT (#1.5214), 3-14,

3-15, 5-7, 5-11, 5-12, 5-20
SQLI_PRIMARY_KEY (#1.5218), 3-5, 3-6,

3-8, 3-9, 3-10, 3-11, 5-16, 5-21, 5-22, 5-23,
5-24

SQLI_SCHEMA (#1.521), 5-2
SQLI_SCHEMA File (#1.521), 3-3, 5-2, 5-13
SQLI_TABLE (#1.5215), 3-3, 3-4, 3-5, 3-10,

3-12, 5-6, 5-13, 5-14, 5-15, 7-1
SQLI_TABLE_ELEMENT (#1.5216), 3-5, 3-

6, 3-8, 3-10, 3-16, 5-15, 5-16, 5-20, 5-21,
5-23, 5-24, 5-25

Find a Table Element's Column Entry, 3-7
Find the Primary Key for a Given Table, 3-8
Find the Projected Table for a File, 3-4
FM_BOOLEAN Domain, 3-14
FM_DATE Domain, 3-14
FM_MOMENT Domain, 3-14
Foreign Keys, 3-6, 3-15, 3-16, 4-4, 5-6, 5-24, 5-

25, 7-2
FORUM, iv
Free Text Fields, 4-4

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) Index-3
Revised January 2005 DI*21.0*38

Index

G
Glossary, 1
Glossary (ISS)

Home Page Web Address, Glossary, 3
Guidelines

SQLI Mappers, 2-4

H
Help

At Prompts, xv
Online, xv

Home Pages
Adobe Acrobat Quick Guide Web Address,

xvii
Adobe Web Address, xvi
Health Systems Design and Development

(HSD&D) Web Address, xvi
ISS Acronyms Home Page Web Address,

Glossary, 3
ISS Glossary Home Page Web Address,

Glossary, 3
SQLI Home Page Web Address, xvi
VistA Documentation Library (VDL) Home

Page Web Address, xvii
How to

Obtain Technical Information Online, xv
Use this Manual, xiii

I
Identifier Naming Algorithms, 7-1
IEN Columns, 3-7, 4-3, 5-18
Implementation Notes, 7-3
Indexes

VA FileMan, 4-6
Information Provided by SQLI, 2-2
Insert

Operations, 7-2
SQL, 7-2

Internal VA FileMan Tables Not Projected, 7-3
Introduction, 1-1
ISS Acronyms

Home Page Web Address, Glossary, 3
ISS Glossary

Home Page Web Address, Glossary, 3

K
Kernel Compatibility, 2-5
KEY_WORD Field, 5-3

Keys
Foreign, 3-15

Keywords, 5-3, 7-2
Populating, 2-4

KF_COMMENT Field, 5-9
KF_DATA_TYPE Field, 5-9
KF_INT_EXEC Field, 5-9
KF_INT_EXPR Field, 5-9
KF_NAME Field, 5-9

L
List File Attributes Option, xv

M
Mappers

Building, 2-1
Guidelines, 2-4

Mapping
VA FileMan Fields to SQL Data Types, 4-3

Menus
Data Dictionary Utilities, xv

Multiline Computed Fields, 4-3, 7-3
Multiple. See Subfiles
Mumps Fields, 4-4

N
Naming Algorithms, 7-1
NEW_PERSON File (#200), 3-15
Non-regular Cross-references, 7-4
Notes

Implementation, 7-3
Numeric Fields, 4-4

O
Obtain Technical Information Online, How to,

xv
Obtaining Data Dictionary Listings, xv
OF_COMMENT Field, 5-11
OF_DATA_TYPE Field, 5-11
OF_EXT_EXEC Field, 5-12
OF_EXT_EXPR Field, 5-11
OF_NAME Field, 5-11
Online

Documentation, xv
Help Frames, xv

Options
List File Attributes, xv

Index-4 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Index

ORDERING to Loop Through a File's Data
Entries, 3-11

Organization of SQLI Information, 2-2
Orientation, xiii
Other Issues, 7-1
Output Format Conversions (Base to External),

3-14
Output Transforms, 7-4

P
P_COLUMN Field, 5-21, 5-22
P_END_IF, 3-11
P_END_IF Field, 5-22, 5-23
P_ENDIF Field, 3-11
P_KEY_FORMAT Field, 5-22
P_PRESELECT Field, 5-22
P_ROW_COUNT Field, 5-22, 7-1
P_SEQUENCE Field, 3-2, 3-8, 3-9, 3-10, 3-12,

4-8, 5-21
P_START_AT, 3-11
P_START_AT Field, 3-9, 3-10, 3-11, 5-22, 5-23
P_TBL_ELEMENT Field, 5-21, 5-23
Parent Foreign Keys, 3-16
Parsing the SQLI Projection, 3-1
Patches

Revisions, iv
PATIENT File (#2), 4-2, 4-3, 4-7
PATIENT_ID Field, 4-3
Placeholders, 3-1

{B}, 3-2, 3-14, 4-4, 5-8, 5-12
{E}, 3-2
{I}, 3-2, 3-14, 5-8, 5-9
{K}, 3-9, 3-12, 4-7, 4-9, 5-9, 5-14, 5-20, 5-23
{K}, 3-2
{V}, 3-2, 5-20

Pointer Fields, 3-13, 3-16, 4-4, 5-12, 5-25, 7-1
Pointers

Dangling, 7-3
Variable, 7-4

Populating
Keywords, 2-4
SQLI_KEY_WORD File (#1.52101), 2-4

Primary Keys, 3-2, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10,
3-11, 3-8–3-11, 3-12, 3-16, 4-3, 4-9, 5-6, 5-9,
5-10, 5-14, 5-21, 5-22, 5-23, 5-24, 7-1, 7-2
For a Projected Subfile, 3-9

Processing Columns, 3-6
Processing Tables, 3-5
Programming SAC, 2-4, 2-5

Q
Question Mark Help, xv
Quick Reference Card, A, 1

R
Reader, Assumptions About the, xvi
Record

Data Storage, 3-11
Locations, 3-11

Reference Materials, xvi
Relational Model, 4-1
Retrieving Column Values, 3-13

Through a DBS Call, 3-13
Return Value Placeholder

{V}, 3-2
Revision History, iii

Documentation, iii
Patches, iv

S
S_DESCRIPTION Field, 5-2
S_NAME Field, 5-2
S_SECURITY Field, 5-2
SAC

Programming, 2-5
Schemas, 3-3, 7-1
Set of Codes Fields, 4-4, 5-12, 7-1
SQL and VA FileMan Terminology, xiv
SQL Identifier Naming Algorithms, 7-1
SQL Training, xiii
SQLI

Entity-Relationship Diagram, 2-3
Home Page Web Address, xvi
Implementation Notes, 7-3
Information Provided, 2-2
Organization of Information, 2-2
Schemas, 7-1

SQLI Mapper
Building, 2-1

SQLI Mappers Guidelines, 2-4
SQLI_COLUMN File (#1.5217), 3-2, 3-5, 3-6,

3-7, 3-13, 3-15, 4-3, 4-4, 5-14, 5-16, 5-17, 5-
18, 5-20, 5-21, 5-24

SQLI_DATA_TYPE File (#1.5211), 3-15, 5-4,
5-8, 5-9, 5-11

SQLI_DOMAIN File (#1.5212), 3-14, 3-15, 5-4,
5-6, 5-8, 5-15

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) Index-5
Revised January 2005 DI*21.0*38

Index

SQLI_ERROR_LOG File (#1.52192), 5-26, 5-
27, 5-28, 7-3

SQLI_ERROR_TEXT, 5-26
SQLI_FOREIGN_KEY File (#1.5219), 3-5, 3-6,

5-16, 5-24, 5-25
SQLI_KEY_FORMAT File (#1.5213), 4-9, 5-9,

5-10, 5-22
SQLI_KEY_WORD File (#1.52101), 2-4, 5-3,

6-1, 7-2
SQLI_OUTPUT_FORMAT File (#1.5214), 3-

14, 3-15, 5-7, 5-11, 5-12, 5-20
SQLI_PRIMARY_KEY File (#1.5218), 3-5, 3-

6, 3-8, 3-9, 3-10, 3-11, 5-16, 5-21, 5-22, 5-23,
5-24

SQLI_SCHEMA File (#1.521), 3-3, 5-2, 5-13
SQLI_TABLE File (#1.5215), 3-3, 3-4, 3-5, 3-

10, 3-12, 5-6, 5-13, 5-14, 5-15, 7-1
SQLI_TABLE_ELEMENT File (#1.5216), 3-5,

3-6, 3-8, 3-10, 3-16, 5-15, 5-16, 5-20, 5-21, 5-
23, 5-24, 5-25

Standards and Conventions, 2-4
Starting Point

SQLI_SCHEMA File (#1.521), 3-3
STATS^DMSQS, 7-1
Subfiles, 3-7, 3-9, 3-10, 3-11, 3-12, 3-15, 3-16,

4-2, 4-6, 5-14, 5-20, 5-22, 5-25
Summary

How SQLI Translates VA FileMan Field
Types into SQL Columns, 4-5

Supported References, 6-1
Symbols Found in the Documentation, xiii
Synchronization

DD, 2-4

T
T_COMMENT Field, 5-13
T_FILE Field, 5-14
T_GLOBAL Field, 3-12, 5-14
T_MASTER_TABLE Field, 4-7, 5-13
T_NAME Field, 5-13
T_ROW_COUNT Field, 5-14, 7-1
T_SCHEMA Field, 3-3, 5-13
T_UPDATE Field, 5-14
T_VERSION_FM Field, 5-14
Table Elements, 3-5
Tables

About Table Elements, 3-5
DA_RETURN_CODES, 3-6
Find a Table Element's Column Entry, 3-7
Find the Primary Key for a Given Table, 3-8

Finding the Projected Table for a File, 3-4
Internal VA FileMan Tables Not Projected, 7-

3
Processing), 3-5

TaskMan guidelines, 2-5
Terminology

VA FileMan and SQL, xiv
Training

SQL, xiii
Transforms

Output, 7-4

U
Update

Operations, 7-2
SQL, 7-2

URLs
Adobe Acrobat Quick Guide Web Address,

xvii
Adobe Home Page Web Address, xvi
Health Systems Design and Development

(HSD&D) Home Page Web Address, xvi
Use this Manual, How to, xiii
Using

Adobe Acrobat Reader, xvi
The {B}, {E}, {I}, {K}, and {V}

Placeholders, 3-1

V
VA Business Rules, 7-2
VA FileMan

Field Types, 4-2
Summary, 4-5

File Definition Structures, 4-1
Indexes, 4-6
SQL, 4-1
SQL Terminology, xiv
Subfiles (Multiples), 4-2

VA FileMan, SQL, and the Relational Model, 4-
1

VA Programming Standards and Conventions,
2-4

Variable Pointer Fields, 2-2, 3-13, 4-4
Variable Pointers, 7-4
VistA Documentation Library (VDL)

Home Page Web Address, xvii

Index-6 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

 Index

W
Web Pages

Adobe Acrobat Quick Guide Web Address,
xvii

Adobe Home Page Web Address, xvi
Health Systems Design and Development

(HSD&D) Home Page Web Address, xvi
ISS Acronyms Home Page Web Address,

Glossary, 3
ISS Glossary Home Page Web Address,

Glossary, 3

SQLI Home Page Web Address, xvi
VistA Documentation Library (VDL) Home

Page Web Address, xvii
What is

SQLI?, 1-1
The Purpose of this Manual?, 1-1
VA FileMan, 1-1

Which Objects Are Processed Through Naming
Algorithms, 7-2

Word-processing Fields, 2-2, 3-16, 4-6, 5-14

October 1997 VA FileMan SQLI Vendor Manual (DRAFT) Index-7
Revised January 2005 DI*21.0*38

Index

Index-8 VA FileMan SQLI Vendor Manual (DRAFT) October 1997
 DI*21.0*38 Revised January 2005

	Cover Page
	Revision History
	Contents
	Figures and Tables
	Orientation
	Introduction
	What is VA FileMan?
	What is SQLI?
	What is the Purpose of this Manual?

	Building an SQLI Mapper
	Information Provided by SQLI
	Organization of SQLI Information
	SQLI Entity-Relationship Diagram
	Guidelines for SQLI Mappers
	VA Programming Standards and Conventions
	Populating the SQLI_KEY_WORD File
	Data Dictionary Synchronization
	Kernel Compatibility

	Parsing the SQLI Projection
	About the Examples in this Chapter
	Using the {B}, {E}, {I}, {K}, and {V} Placeholders
	Field Value Placeholders: {I}, {B} and {E}
	Key Placeholders: {K1}, {K2}, etc.
	Return Value Placeholder: {V}

	Example File
	Starting Point: SQLI_SCHEMA File
	Find the Projected Table for a File
	Processing Tables
	About Table Elements
	Processing Columns
	Find a Table Element's Column Entry
	IEN Columns
	Find the Primary Key for a Given Table
	Primary Key for a Projected Subfile
	$ORDERING to Loop Through a File's Data Entries

	Assembling Record Locations
	Retrieving Column Values
	Column Value Conversions
	Domain Conversions (Base to Internal)
	Output Format Conversions (Base to External)

	Foreign Keys

	VA FileMan and SQL
	VA FileMan, SQL, and the Relational Model
	VA FileMan File Definition Structures
	VA FileMan Field Types
	VA FileMan Subfiles (Multiples)
	Mapping VA FileMan Fields to SQL Data Types
	IEN Columns
	Computed Fields
	Date Fields
	Free Text, Numeric, and MUMPS Fields
	Pointer Fields
	Set of Codes Fields
	Variable Pointer Fields
	Word-processing Fields

	VA FileMan Indexes

	File References
	SQLI_SCHEMA File
	SQLI_KEY_WORD File
	SQLI_DATA_TYPE File
	SQLI_DOMAIN File
	Code Fragment Formats

	SQLI_KEY_FORMAT File
	SQLI_OUTPUT_FORMAT File
	Code Fragment Formats

	SQLI_TABLE File
	SQLI_TABLE_ELEMENT File
	SQLI_COLUMN File
	Code Fragment Formats

	SQLI_PRIMARY_KEY File
	Code Fragment Formats

	SQLI_FOREIGN_KEY File
	SQLI_ERROR_TEXT File
	SQLI_ERROR_LOG File

	Application Program Interfaces (APIs)—Supported References
	Other Issues
	Domain Cardinality
	SQLI and Schemas
	SQL Identifier Naming Algorithms
	Which Objects Are Processed Through Naming Algorithms?

	VA Business Rules and Insert/Update/Delete Operations
	SQLI Implementation Notes

	Glossary
	Appendix A—Quick Reference Card
	Index

